Ultrasound-derived Biceps Femoris Long Head Fascicle Length: Extrapolation Pitfalls
PURPOSEThis study aimed to compare biceps femoris long head (BFlh) fascicle length (Lf) obtained with different ultrasound-based approaches1) single ultrasound images and linear Lf extrapolation, 2) single ultrasound images and one of two different trigonometric equations (termed equations A and B),...
Gespeichert in:
Veröffentlicht in: | Medicine and science in sports and exercise 2020-01, Vol.52 (1), p.233-243 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | PURPOSEThis study aimed to compare biceps femoris long head (BFlh) fascicle length (Lf) obtained with different ultrasound-based approaches1) single ultrasound images and linear Lf extrapolation, 2) single ultrasound images and one of two different trigonometric equations (termed equations A and B), and 3) extended field of view (EFOV) ultrasound images.
METHODSThirty-seven elite alpine skiers (21.7 ± 2.8 yr) without a previous history of hamstring strain injury were tested. Single ultrasound images were collected with a 5-cm linear transducer from BFlh at 50% femur length and were compared with whole muscle scans acquired by EFOV ultrasound.
RESULTSThe intrasession reliability (intraclass correlation coefficient [ICC3,k]) of Lf measurements was very high for both single ultrasound images (i.e., Lf estimated by linear extrapolation; ICC3,k = 0.96–0.99, SEM = 0.18 cm) and EFOV scans (ICC3,k = 0.91–0.98, SEM = 0.19 cm). Although extrapolation methods showed cases of Lf overestimation and underestimation when compared with EFOV scans, mean Lf measured from EFOV scans (8.07 ± 1.36 cm) was significantly shorter than Lf estimated by trigonometric equations A (9.98 ± 2.12 cm, P < 0.01) and B (8.57 ± 1.59 cm, P = 0.03), but not significantly different from Lf estimated with manual linear extrapolation (8.40 ± 1.68 cm, P = 0.13). Bland–Altman analyses revealed mean differences in Lf obtained from EFOV scans and those estimated from equation A, equation B, and manual linear extrapolation of 1.91 ± 2.1, 0.50 ± 1.0, and 0.33 ± 1.0 cm, respectively.
CONCLUSIONSThe typical extrapolation methods used for estimating Lf from single ultrasound images are reliable within the same session, but not accurate for estimating BFlh Lf at rest with a 5-cm field of view. We recommend that EFOV scans are implemented to accurately determine intervention-related Lf changes in BFlh. |
---|---|
ISSN: | 0195-9131 1530-0315 |
DOI: | 10.1249/MSS.0000000000002123 |