Interleukin-6 (IL-6) mediates protection against glucose toxicity in human Müller cells via activation of VEGF-A signaling

Interleukin-6 (IL-6) has become a target of interest for drug development aiming to treat diabetic retinopathy. Since IL-6 signaling can promote beneficial as well as detrimental effects via two different signaling pathways, the objective of the present study was to investigate the effects of classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2019-09, Vol.517 (2), p.227-232
Hauptverfasser: Coughlin, Brandon A., Trombley, Brett T., Mohr, Susanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interleukin-6 (IL-6) has become a target of interest for drug development aiming to treat diabetic retinopathy. Since IL-6 signaling can promote beneficial as well as detrimental effects via two different signaling pathways, the objective of the present study was to investigate the effects of classical IL-6 and IL-6 trans-signaling on human Müller cells (HMC), which are important for the development of diabetic retinopathy. HMCs were cultured in normal (5 mmol/L) and high (25 mmol/L) glucose plus or minus IL-6 or IL-6/sIL-6R. IL-6 receptor expression using immunohistochemistry and flow cytometry and cytokine release using magnetic bead assays were determined. HMCs express the membrane bound form of the IL-6 receptor (mIL-6R), gp130, and can release the soluble forms sIL-6R and sgp130 demonstrating that HMCs are capable of responding to classical IL-6 and IL-6 trans-signaling. IL-6 protected HMCs from glucose toxicity via VEGF-A signaling. IL-6/sIL-6R caused only modest protection, which was not mediated by VEGF-A. Our data show for the first time that classical IL-6 signaling exerts its beneficial effects through VEGF-A action contrary to IL-6 trans-signaling, which was VEGF-A independent. These results have clinical implications for drug development targeting IL-6 since strict anti-IL-6 therapies might further decrease neuroretinal functions in the diabetic retina. [Display omitted] •Human Müller cells express mIL-6R and gp130 allowing for classical IL-6 signaling.•Hyperglycemia upregulates mIL-6R and gp130 expression.•IL-6 via classical signaling induces VEGF-A signaling in human Müller cells.•IL-6-induced VEGF-A production protects human Müller cells from glucose toxicity.•Human Müller cells only weakly respond to IL-6 trans-signaling.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2019.07.044