Effect of O antigen ligase gene mutation on oxidative stress resistance and pathogenicity of NMEC strain RS218
Escherichia coli is one of the primary causes of bacterial sepsis and meningitis in newborns. E. coli RS218, a prototype strain of neonatal meningitis E. coli (NMEC), is often used in research on the pathogenesis of NMEC. Phagocytes are crucial sentinels of immunity, and their antibacterial ability...
Gespeichert in:
Veröffentlicht in: | Microbial pathogenesis 2019-11, Vol.136, p.103656-103656, Article 103656 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Escherichia coli is one of the primary causes of bacterial sepsis and meningitis in newborns. E. coli RS218, a prototype strain of neonatal meningitis E. coli (NMEC), is often used in research on the pathogenesis of NMEC. Phagocytes are crucial sentinels of immunity, and their antibacterial ability is largely determined by the capability to produce large amounts of ROS. The capacity of bacteria to endure oxidative pressure affects their colonization in the host. Here, we systematically screened the genes that plays key roles in the tolerance of the model of E. coli RS218 to peroxygen environment using a Tn5 mutant library. As a result, a gene encoding O antigen polymerase (O antigen ligase) that contains the Wzy_C superfamily domain (herein designated as Ocw) was identified in E. coli RS218. Furthermore, we constructed an isogenic deletion mutant of ocw gene and its complementary strain in E. coli. Our results revealed that ocw affects the lipopolysaccharide synthesis, ROS tolerance, and survival of E. coli in the host environment. The discovery of ocw provides important clues for better understanding the function of O-antigen.
•Mutant library was used to screen the oxidant stress-related gene ocw related to LPS synthesis and bacterial pathogenicity. |
---|---|
ISSN: | 0882-4010 1096-1208 |
DOI: | 10.1016/j.micpath.2019.103656 |