Phosphorus export from artificially drained fields across the Eastern Corn Belt
Field observations that quantify agricultural phosphorus (P) losses are critical for the development of P reduction strategies across the Eastern Corn Belt region of North America. Within this region, surface water bodies including Lake Erie are sensitive to non-point P loadings. It is therefore imp...
Gespeichert in:
Veröffentlicht in: | Journal of Great Lakes research 2018-02, Vol.44 (1), p.43-53 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Field observations that quantify agricultural phosphorus (P) losses are critical for the development of P reduction strategies across the Eastern Corn Belt region of North America. Within this region, surface water bodies including Lake Erie are sensitive to non-point P loadings. It is therefore imperative to quantify the impact of agricultural crop production on surface and subsurface water quality. This study characterized discharge, P concentrations, and P loads in surface runoff and subsurface drainage from 38 edge-of-field research sites in Ohio. Over the four-year study period, 31±16% (mean±one standard deviation) of annual precipitation became subsurface discharge while 7±8% became surface discharge. Subsurface discharge accounted for 81±23% of annual discharge, 71±26% of annual dissolved reactive phosphorus (DRP) load, and 69±27% of annual total phosphorus (TP) load. A P balance was also developed using management and loading data from the study sites. Under prevailing management practices, P removal (i.e., surface losses, subsurface losses, crop uptake) was greater than P input (i.e., atmospheric deposition, fertilizer application) on 60% of fields. Even so, further reduction of edge-of-field P losses will likely be necessary to meet watershed-scale P load recommendations. Findings suggest that balancing P inputs with crop uptake may not be sufficient to reduce edge-of-field losses due to a combination of legacy P and high-intensity rainfall events. Implementation of management practices targeting P-source will be needed in conjunction with practices at the edge-of-field targeting P-transport in order to meet recommended P loading targets in the Eastern Corn Belt region. |
---|---|
ISSN: | 0380-1330 |
DOI: | 10.1016/j.jglr.2017.11.009 |