The cooperative free volume rate model for segmental dynamics: Application to glass-forming liquids and connections with the density scaling approach

. In this paper, we apply the cooperative free volume (CFV) rate model for pressure-dependent dynamics of glass-forming liquids and polymer melts. We analyze segmental relaxation times, τ , as a function of temperature ( T and free volume ( V free , and make substantive comparisons with the density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2019-08, Vol.42 (8), p.100-10, Article 100
Hauptverfasser: White, Ronald P., Lipson, Jane E. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. In this paper, we apply the cooperative free volume (CFV) rate model for pressure-dependent dynamics of glass-forming liquids and polymer melts. We analyze segmental relaxation times, τ , as a function of temperature ( T and free volume ( V free , and make substantive comparisons with the density scaling approach. V free , the difference between the total volume ( V and the volume at close-packing, is predicted independently of the dynamics for any temperature and pressure using the locally correlated lattice (LCL) equation-of-state (EOS) analysis of characteristic thermodynamic data. We discuss the underlying physical motivation in the CFV and density scaling models, and show that their key, respective, material parameters are connected, where the CFV b parameter and the density scaling γ parameter each characterize the relative sensitivity of dynamics to changes in T , vs. changes in V . We find γ ≈ 1 / [ b ( V free / V ) @ T g ] , where ( V free / V ) @ T g is the value predicted by the LCL EOS at the ambient T g . In comparing the predictive power of the two models we highlight the CFV advantage in yielding a universal linear collapse of relaxation data using a minimal set of parameters, compared to the same parameter space yielding a changing functional form in the density scaling approach. Further, we demonstrate that in the low data limit, where there is not enough data to characterize the density scaling model, the CFV model may still be successfully applied, and we even use it to predict the correct γ parameter. Graphical abstract
ISSN:1292-8941
1292-895X
DOI:10.1140/epje/i2019-11862-3