Bath-Induced Decay of Stark Many-Body Localization
We investigate the relaxation dynamics of an interacting Stark-localized system coupled to a dephasing bath, and compare its behavior to the conventional disorder-induced many body localized system. Specifically, we study the dynamics of population imbalance between even and odd sites, and the growt...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-07, Vol.123 (3), p.030602-030602, Article 030602 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the relaxation dynamics of an interacting Stark-localized system coupled to a dephasing bath, and compare its behavior to the conventional disorder-induced many body localized system. Specifically, we study the dynamics of population imbalance between even and odd sites, and the growth of the von Neumann entropy. For a large potential gradient, the imbalance is found to decay on a timescale τ that grows quadratically with the Wannier-Stark tilt. For the noninteracting system, it shows an exponential decay, which becomes a stretched exponential decay in the presence of finite interactions. This is different from a system with disorder-induced localization, where the imbalance exhibits a stretched exponential decay also for vanishing interactions. As another clear qualitative difference, we do not find a logarithmically slow growth of the von Neumann entropy as it is found for the disordered system. Our findings can immediately be tested experimentally with ultracold atoms in optical lattices. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.123.030602 |