Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions

Background Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved. Purpose To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2020-02, Vol.51 (2), p.627-634
Hauptverfasser: Li, Ting, Hong, Yuan, Kong, Dexing, Li, Kangan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 2
container_start_page 627
container_title Journal of magnetic resonance imaging
container_volume 51
creator Li, Ting
Hong, Yuan
Kong, Dexing
Li, Kangan
description Background Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved. Purpose To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast lesions. Study Type Retrospective. Population In all, 120 patients with breast lesions (62 malignant, 58 benign). Sequence DKI sequence with seven b‐values (0, 500, 1000, 1500, 2000, 2500, and 3000 s/mm2) and DWI sequence with two b‐values (0 and 1000 s/mm2) on 3.0T MRI. Assessment Histogram parameters of the DKI model (K and D) and the DWI model (ADC), including the minimum, maximum, mean, percentile values (25th, 50th, 75th, and 95th), standard deviation, kurtosis and skewness, were calculated by two radiologists for the whole lesion volume. Statistical Tests Student's t‐test was used to compare malignant and benign lesions. The diagnostic performances were evaluated by receiver operating characteristic (ROC) analysis. Results Kmax, Dmin, and ADCmin had the highest area under the curve (AUC) (0.875, 0.830, and 0.847, respectively), sensitivity (85.5%, 74.2%, and 77.4%, respectively), and accuracy (85.0%, 79.2%, and 81.7%, respectively) in their individual histogram parameter groups, and Kmax was found to outperform Dmin and ADCmin. ADC histogram parameters (from ADCmin to ADCsd) were significantly lower than D histogram parameters in all groups. Data Conclusion Kmax, Dmin, and ADCmin were found to be better metrics than the corresponding average values for differentiating benign from malignant tumors. Histogram parameters derived from the DKI model provided more information and had better diagnostic performance than ADC parameters derived from the DWI model. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:627–634.
doi_str_mv 10.1002/jmri.26884
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268946223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334989442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-9329345186b1b1e36b48adbc302842a92c7d144fd01c4309776eef7992c86db93</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoTqcXP4AUvIjQmX9tk6MMdZOJIHouaZvOzLSZSevYzY_gZ_STmK7TgwdPCfk9eXjfHwAnCI4QhPhyUVk1wjFjdAccoAjjEEcs3vV3GJEQMZgMwKFzCwgh5zTaBwOCCIso5gdATJRrzNyKKhC10GunXGDKoFBl2Tpl6uC1tY3pXlUl5qqeB5lwsgh8snoxWn59fL4b3VZyk8vN58xK4ZpAy07gjsBeKbSTx9tzCJ5vrp_Gk3D2cDsdX83CnGJCQ04wJzRCLM5QhiSJM8pEkeUEYkax4DhPCkRpWUCUUwJ5ksRSlgn3AYuLjJMhOO-9S2veWumatFIul1qLWprWpdg3xGmMMfHo2R90YVrr1_cUIZR7zs80BBc9lVvjnJVlurR-SbtOEUy74tOu-HRTvIdPt8o2q2Txi_407QHUAyul5fofVXp3_zjtpd90vY6n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334989442</pqid></control><display><type>article</type><title>Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Li, Ting ; Hong, Yuan ; Kong, Dexing ; Li, Kangan</creator><creatorcontrib>Li, Ting ; Hong, Yuan ; Kong, Dexing ; Li, Kangan</creatorcontrib><description>Background Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved. Purpose To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast lesions. Study Type Retrospective. Population In all, 120 patients with breast lesions (62 malignant, 58 benign). Sequence DKI sequence with seven b‐values (0, 500, 1000, 1500, 2000, 2500, and 3000 s/mm2) and DWI sequence with two b‐values (0 and 1000 s/mm2) on 3.0T MRI. Assessment Histogram parameters of the DKI model (K and D) and the DWI model (ADC), including the minimum, maximum, mean, percentile values (25th, 50th, 75th, and 95th), standard deviation, kurtosis and skewness, were calculated by two radiologists for the whole lesion volume. Statistical Tests Student's t‐test was used to compare malignant and benign lesions. The diagnostic performances were evaluated by receiver operating characteristic (ROC) analysis. Results Kmax, Dmin, and ADCmin had the highest area under the curve (AUC) (0.875, 0.830, and 0.847, respectively), sensitivity (85.5%, 74.2%, and 77.4%, respectively), and accuracy (85.0%, 79.2%, and 81.7%, respectively) in their individual histogram parameter groups, and Kmax was found to outperform Dmin and ADCmin. ADC histogram parameters (from ADCmin to ADCsd) were significantly lower than D histogram parameters in all groups. Data Conclusion Kmax, Dmin, and ADCmin were found to be better metrics than the corresponding average values for differentiating benign from malignant tumors. Histogram parameters derived from the DKI model provided more information and had better diagnostic performance than ADC parameters derived from the DWI model. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:627–634.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26884</identifier><identifier>PMID: 31385429</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Benign ; Biopsy ; breast ; Breast cancer ; Diagnostic systems ; diffusion ; Diffusion Magnetic Resonance Imaging ; Histograms ; Humans ; Image Interpretation, Computer-Assisted ; Kurtosis ; Lesions ; Magnetic resonance imaging ; Mathematical models ; Medical imaging ; neoplasms ; Parameters ; Population studies ; Reproducibility of Results ; Retrospective Studies ; ROC Curve ; Sensitivity and Specificity ; Statistical analysis ; Statistical tests ; Tumors</subject><ispartof>Journal of magnetic resonance imaging, 2020-02, Vol.51 (2), p.627-634</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><rights>2020 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-9329345186b1b1e36b48adbc302842a92c7d144fd01c4309776eef7992c86db93</citedby><cites>FETCH-LOGICAL-c4234-9329345186b1b1e36b48adbc302842a92c7d144fd01c4309776eef7992c86db93</cites><orcidid>0000-0003-4652-1402 ; 0000-0001-7901-5288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26884$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26884$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31385429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Hong, Yuan</creatorcontrib><creatorcontrib>Kong, Dexing</creatorcontrib><creatorcontrib>Li, Kangan</creatorcontrib><title>Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved. Purpose To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast lesions. Study Type Retrospective. Population In all, 120 patients with breast lesions (62 malignant, 58 benign). Sequence DKI sequence with seven b‐values (0, 500, 1000, 1500, 2000, 2500, and 3000 s/mm2) and DWI sequence with two b‐values (0 and 1000 s/mm2) on 3.0T MRI. Assessment Histogram parameters of the DKI model (K and D) and the DWI model (ADC), including the minimum, maximum, mean, percentile values (25th, 50th, 75th, and 95th), standard deviation, kurtosis and skewness, were calculated by two radiologists for the whole lesion volume. Statistical Tests Student's t‐test was used to compare malignant and benign lesions. The diagnostic performances were evaluated by receiver operating characteristic (ROC) analysis. Results Kmax, Dmin, and ADCmin had the highest area under the curve (AUC) (0.875, 0.830, and 0.847, respectively), sensitivity (85.5%, 74.2%, and 77.4%, respectively), and accuracy (85.0%, 79.2%, and 81.7%, respectively) in their individual histogram parameter groups, and Kmax was found to outperform Dmin and ADCmin. ADC histogram parameters (from ADCmin to ADCsd) were significantly lower than D histogram parameters in all groups. Data Conclusion Kmax, Dmin, and ADCmin were found to be better metrics than the corresponding average values for differentiating benign from malignant tumors. Histogram parameters derived from the DKI model provided more information and had better diagnostic performance than ADC parameters derived from the DWI model. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:627–634.</description><subject>Benign</subject><subject>Biopsy</subject><subject>breast</subject><subject>Breast cancer</subject><subject>Diagnostic systems</subject><subject>diffusion</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Kurtosis</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>neoplasms</subject><subject>Parameters</subject><subject>Population studies</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Tumors</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LwzAYh4MoTqcXP4AUvIjQmX9tk6MMdZOJIHouaZvOzLSZSevYzY_gZ_STmK7TgwdPCfk9eXjfHwAnCI4QhPhyUVk1wjFjdAccoAjjEEcs3vV3GJEQMZgMwKFzCwgh5zTaBwOCCIso5gdATJRrzNyKKhC10GunXGDKoFBl2Tpl6uC1tY3pXlUl5qqeB5lwsgh8snoxWn59fL4b3VZyk8vN58xK4ZpAy07gjsBeKbSTx9tzCJ5vrp_Gk3D2cDsdX83CnGJCQ04wJzRCLM5QhiSJM8pEkeUEYkax4DhPCkRpWUCUUwJ5ksRSlgn3AYuLjJMhOO-9S2veWumatFIul1qLWprWpdg3xGmMMfHo2R90YVrr1_cUIZR7zs80BBc9lVvjnJVlurR-SbtOEUy74tOu-HRTvIdPt8o2q2Txi_407QHUAyul5fofVXp3_zjtpd90vY6n</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Li, Ting</creator><creator>Hong, Yuan</creator><creator>Kong, Dexing</creator><creator>Li, Kangan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4652-1402</orcidid><orcidid>https://orcid.org/0000-0001-7901-5288</orcidid></search><sort><creationdate>202002</creationdate><title>Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions</title><author>Li, Ting ; Hong, Yuan ; Kong, Dexing ; Li, Kangan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-9329345186b1b1e36b48adbc302842a92c7d144fd01c4309776eef7992c86db93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benign</topic><topic>Biopsy</topic><topic>breast</topic><topic>Breast cancer</topic><topic>Diagnostic systems</topic><topic>diffusion</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Kurtosis</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>neoplasms</topic><topic>Parameters</topic><topic>Population studies</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Hong, Yuan</creatorcontrib><creatorcontrib>Kong, Dexing</creatorcontrib><creatorcontrib>Li, Kangan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ting</au><au>Hong, Yuan</au><au>Kong, Dexing</au><au>Li, Kangan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2020-02</date><risdate>2020</risdate><volume>51</volume><issue>2</issue><spage>627</spage><epage>634</epage><pages>627-634</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved. Purpose To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast lesions. Study Type Retrospective. Population In all, 120 patients with breast lesions (62 malignant, 58 benign). Sequence DKI sequence with seven b‐values (0, 500, 1000, 1500, 2000, 2500, and 3000 s/mm2) and DWI sequence with two b‐values (0 and 1000 s/mm2) on 3.0T MRI. Assessment Histogram parameters of the DKI model (K and D) and the DWI model (ADC), including the minimum, maximum, mean, percentile values (25th, 50th, 75th, and 95th), standard deviation, kurtosis and skewness, were calculated by two radiologists for the whole lesion volume. Statistical Tests Student's t‐test was used to compare malignant and benign lesions. The diagnostic performances were evaluated by receiver operating characteristic (ROC) analysis. Results Kmax, Dmin, and ADCmin had the highest area under the curve (AUC) (0.875, 0.830, and 0.847, respectively), sensitivity (85.5%, 74.2%, and 77.4%, respectively), and accuracy (85.0%, 79.2%, and 81.7%, respectively) in their individual histogram parameter groups, and Kmax was found to outperform Dmin and ADCmin. ADC histogram parameters (from ADCmin to ADCsd) were significantly lower than D histogram parameters in all groups. Data Conclusion Kmax, Dmin, and ADCmin were found to be better metrics than the corresponding average values for differentiating benign from malignant tumors. Histogram parameters derived from the DKI model provided more information and had better diagnostic performance than ADC parameters derived from the DWI model. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:627–634.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31385429</pmid><doi>10.1002/jmri.26884</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4652-1402</orcidid><orcidid>https://orcid.org/0000-0001-7901-5288</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2020-02, Vol.51 (2), p.627-634
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2268946223
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Benign
Biopsy
breast
Breast cancer
Diagnostic systems
diffusion
Diffusion Magnetic Resonance Imaging
Histograms
Humans
Image Interpretation, Computer-Assisted
Kurtosis
Lesions
Magnetic resonance imaging
Mathematical models
Medical imaging
neoplasms
Parameters
Population studies
Reproducibility of Results
Retrospective Studies
ROC Curve
Sensitivity and Specificity
Statistical analysis
Statistical tests
Tumors
title Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histogram%20analysis%20of%20diffusion%20kurtosis%20imaging%20based%20on%20whole%E2%80%90volume%20images%20of%20breast%20lesions&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Li,%20Ting&rft.date=2020-02&rft.volume=51&rft.issue=2&rft.spage=627&rft.epage=634&rft.pages=627-634&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26884&rft_dat=%3Cproquest_cross%3E2334989442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334989442&rft_id=info:pmid/31385429&rfr_iscdi=true