Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions
Background Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved. Purpose To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast l...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2020-02, Vol.51 (2), p.627-634 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 2 |
container_start_page | 627 |
container_title | Journal of magnetic resonance imaging |
container_volume | 51 |
creator | Li, Ting Hong, Yuan Kong, Dexing Li, Kangan |
description | Background
Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved.
Purpose
To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast lesions.
Study Type
Retrospective.
Population
In all, 120 patients with breast lesions (62 malignant, 58 benign).
Sequence
DKI sequence with seven b‐values (0, 500, 1000, 1500, 2000, 2500, and 3000 s/mm2) and DWI sequence with two b‐values (0 and 1000 s/mm2) on 3.0T MRI.
Assessment
Histogram parameters of the DKI model (K and D) and the DWI model (ADC), including the minimum, maximum, mean, percentile values (25th, 50th, 75th, and 95th), standard deviation, kurtosis and skewness, were calculated by two radiologists for the whole lesion volume.
Statistical Tests
Student's t‐test was used to compare malignant and benign lesions. The diagnostic performances were evaluated by receiver operating characteristic (ROC) analysis.
Results
Kmax, Dmin, and ADCmin had the highest area under the curve (AUC) (0.875, 0.830, and 0.847, respectively), sensitivity (85.5%, 74.2%, and 77.4%, respectively), and accuracy (85.0%, 79.2%, and 81.7%, respectively) in their individual histogram parameter groups, and Kmax was found to outperform Dmin and ADCmin. ADC histogram parameters (from ADCmin to ADCsd) were significantly lower than D histogram parameters in all groups.
Data Conclusion
Kmax, Dmin, and ADCmin were found to be better metrics than the corresponding average values for differentiating benign from malignant tumors. Histogram parameters derived from the DKI model provided more information and had better diagnostic performance than ADC parameters derived from the DWI model.
Level of Evidence: 3
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2020;51:627–634. |
doi_str_mv | 10.1002/jmri.26884 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268946223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334989442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-9329345186b1b1e36b48adbc302842a92c7d144fd01c4309776eef7992c86db93</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoTqcXP4AUvIjQmX9tk6MMdZOJIHouaZvOzLSZSevYzY_gZ_STmK7TgwdPCfk9eXjfHwAnCI4QhPhyUVk1wjFjdAccoAjjEEcs3vV3GJEQMZgMwKFzCwgh5zTaBwOCCIso5gdATJRrzNyKKhC10GunXGDKoFBl2Tpl6uC1tY3pXlUl5qqeB5lwsgh8snoxWn59fL4b3VZyk8vN58xK4ZpAy07gjsBeKbSTx9tzCJ5vrp_Gk3D2cDsdX83CnGJCQ04wJzRCLM5QhiSJM8pEkeUEYkax4DhPCkRpWUCUUwJ5ksRSlgn3AYuLjJMhOO-9S2veWumatFIul1qLWprWpdg3xGmMMfHo2R90YVrr1_cUIZR7zs80BBc9lVvjnJVlurR-SbtOEUy74tOu-HRTvIdPt8o2q2Txi_407QHUAyul5fofVXp3_zjtpd90vY6n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334989442</pqid></control><display><type>article</type><title>Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Li, Ting ; Hong, Yuan ; Kong, Dexing ; Li, Kangan</creator><creatorcontrib>Li, Ting ; Hong, Yuan ; Kong, Dexing ; Li, Kangan</creatorcontrib><description>Background
Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved.
Purpose
To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast lesions.
Study Type
Retrospective.
Population
In all, 120 patients with breast lesions (62 malignant, 58 benign).
Sequence
DKI sequence with seven b‐values (0, 500, 1000, 1500, 2000, 2500, and 3000 s/mm2) and DWI sequence with two b‐values (0 and 1000 s/mm2) on 3.0T MRI.
Assessment
Histogram parameters of the DKI model (K and D) and the DWI model (ADC), including the minimum, maximum, mean, percentile values (25th, 50th, 75th, and 95th), standard deviation, kurtosis and skewness, were calculated by two radiologists for the whole lesion volume.
Statistical Tests
Student's t‐test was used to compare malignant and benign lesions. The diagnostic performances were evaluated by receiver operating characteristic (ROC) analysis.
Results
Kmax, Dmin, and ADCmin had the highest area under the curve (AUC) (0.875, 0.830, and 0.847, respectively), sensitivity (85.5%, 74.2%, and 77.4%, respectively), and accuracy (85.0%, 79.2%, and 81.7%, respectively) in their individual histogram parameter groups, and Kmax was found to outperform Dmin and ADCmin. ADC histogram parameters (from ADCmin to ADCsd) were significantly lower than D histogram parameters in all groups.
Data Conclusion
Kmax, Dmin, and ADCmin were found to be better metrics than the corresponding average values for differentiating benign from malignant tumors. Histogram parameters derived from the DKI model provided more information and had better diagnostic performance than ADC parameters derived from the DWI model.
Level of Evidence: 3
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2020;51:627–634.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26884</identifier><identifier>PMID: 31385429</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Benign ; Biopsy ; breast ; Breast cancer ; Diagnostic systems ; diffusion ; Diffusion Magnetic Resonance Imaging ; Histograms ; Humans ; Image Interpretation, Computer-Assisted ; Kurtosis ; Lesions ; Magnetic resonance imaging ; Mathematical models ; Medical imaging ; neoplasms ; Parameters ; Population studies ; Reproducibility of Results ; Retrospective Studies ; ROC Curve ; Sensitivity and Specificity ; Statistical analysis ; Statistical tests ; Tumors</subject><ispartof>Journal of magnetic resonance imaging, 2020-02, Vol.51 (2), p.627-634</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><rights>2020 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-9329345186b1b1e36b48adbc302842a92c7d144fd01c4309776eef7992c86db93</citedby><cites>FETCH-LOGICAL-c4234-9329345186b1b1e36b48adbc302842a92c7d144fd01c4309776eef7992c86db93</cites><orcidid>0000-0003-4652-1402 ; 0000-0001-7901-5288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.26884$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.26884$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31385429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Hong, Yuan</creatorcontrib><creatorcontrib>Kong, Dexing</creatorcontrib><creatorcontrib>Li, Kangan</creatorcontrib><title>Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background
Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved.
Purpose
To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast lesions.
Study Type
Retrospective.
Population
In all, 120 patients with breast lesions (62 malignant, 58 benign).
Sequence
DKI sequence with seven b‐values (0, 500, 1000, 1500, 2000, 2500, and 3000 s/mm2) and DWI sequence with two b‐values (0 and 1000 s/mm2) on 3.0T MRI.
Assessment
Histogram parameters of the DKI model (K and D) and the DWI model (ADC), including the minimum, maximum, mean, percentile values (25th, 50th, 75th, and 95th), standard deviation, kurtosis and skewness, were calculated by two radiologists for the whole lesion volume.
Statistical Tests
Student's t‐test was used to compare malignant and benign lesions. The diagnostic performances were evaluated by receiver operating characteristic (ROC) analysis.
Results
Kmax, Dmin, and ADCmin had the highest area under the curve (AUC) (0.875, 0.830, and 0.847, respectively), sensitivity (85.5%, 74.2%, and 77.4%, respectively), and accuracy (85.0%, 79.2%, and 81.7%, respectively) in their individual histogram parameter groups, and Kmax was found to outperform Dmin and ADCmin. ADC histogram parameters (from ADCmin to ADCsd) were significantly lower than D histogram parameters in all groups.
Data Conclusion
Kmax, Dmin, and ADCmin were found to be better metrics than the corresponding average values for differentiating benign from malignant tumors. Histogram parameters derived from the DKI model provided more information and had better diagnostic performance than ADC parameters derived from the DWI model.
Level of Evidence: 3
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2020;51:627–634.</description><subject>Benign</subject><subject>Biopsy</subject><subject>breast</subject><subject>Breast cancer</subject><subject>Diagnostic systems</subject><subject>diffusion</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Histograms</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Kurtosis</subject><subject>Lesions</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>neoplasms</subject><subject>Parameters</subject><subject>Population studies</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Tumors</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LwzAYh4MoTqcXP4AUvIjQmX9tk6MMdZOJIHouaZvOzLSZSevYzY_gZ_STmK7TgwdPCfk9eXjfHwAnCI4QhPhyUVk1wjFjdAccoAjjEEcs3vV3GJEQMZgMwKFzCwgh5zTaBwOCCIso5gdATJRrzNyKKhC10GunXGDKoFBl2Tpl6uC1tY3pXlUl5qqeB5lwsgh8snoxWn59fL4b3VZyk8vN58xK4ZpAy07gjsBeKbSTx9tzCJ5vrp_Gk3D2cDsdX83CnGJCQ04wJzRCLM5QhiSJM8pEkeUEYkax4DhPCkRpWUCUUwJ5ksRSlgn3AYuLjJMhOO-9S2veWumatFIul1qLWprWpdg3xGmMMfHo2R90YVrr1_cUIZR7zs80BBc9lVvjnJVlurR-SbtOEUy74tOu-HRTvIdPt8o2q2Txi_407QHUAyul5fofVXp3_zjtpd90vY6n</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Li, Ting</creator><creator>Hong, Yuan</creator><creator>Kong, Dexing</creator><creator>Li, Kangan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4652-1402</orcidid><orcidid>https://orcid.org/0000-0001-7901-5288</orcidid></search><sort><creationdate>202002</creationdate><title>Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions</title><author>Li, Ting ; Hong, Yuan ; Kong, Dexing ; Li, Kangan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-9329345186b1b1e36b48adbc302842a92c7d144fd01c4309776eef7992c86db93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benign</topic><topic>Biopsy</topic><topic>breast</topic><topic>Breast cancer</topic><topic>Diagnostic systems</topic><topic>diffusion</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Histograms</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Kurtosis</topic><topic>Lesions</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>neoplasms</topic><topic>Parameters</topic><topic>Population studies</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Hong, Yuan</creatorcontrib><creatorcontrib>Kong, Dexing</creatorcontrib><creatorcontrib>Li, Kangan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ting</au><au>Hong, Yuan</au><au>Kong, Dexing</au><au>Li, Kangan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2020-02</date><risdate>2020</risdate><volume>51</volume><issue>2</issue><spage>627</spage><epage>634</epage><pages>627-634</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background
Breast diffusion kurtosis imaging (DKI) is a novel MRI technique to assess breast cancer but the effectivity still remains to be improved.
Purpose
To investigate the performance of whole‐volume histogram parameters derived from a DKI model for differentiating benign and malignant breast lesions.
Study Type
Retrospective.
Population
In all, 120 patients with breast lesions (62 malignant, 58 benign).
Sequence
DKI sequence with seven b‐values (0, 500, 1000, 1500, 2000, 2500, and 3000 s/mm2) and DWI sequence with two b‐values (0 and 1000 s/mm2) on 3.0T MRI.
Assessment
Histogram parameters of the DKI model (K and D) and the DWI model (ADC), including the minimum, maximum, mean, percentile values (25th, 50th, 75th, and 95th), standard deviation, kurtosis and skewness, were calculated by two radiologists for the whole lesion volume.
Statistical Tests
Student's t‐test was used to compare malignant and benign lesions. The diagnostic performances were evaluated by receiver operating characteristic (ROC) analysis.
Results
Kmax, Dmin, and ADCmin had the highest area under the curve (AUC) (0.875, 0.830, and 0.847, respectively), sensitivity (85.5%, 74.2%, and 77.4%, respectively), and accuracy (85.0%, 79.2%, and 81.7%, respectively) in their individual histogram parameter groups, and Kmax was found to outperform Dmin and ADCmin. ADC histogram parameters (from ADCmin to ADCsd) were significantly lower than D histogram parameters in all groups.
Data Conclusion
Kmax, Dmin, and ADCmin were found to be better metrics than the corresponding average values for differentiating benign from malignant tumors. Histogram parameters derived from the DKI model provided more information and had better diagnostic performance than ADC parameters derived from the DWI model.
Level of Evidence: 3
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2020;51:627–634.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31385429</pmid><doi>10.1002/jmri.26884</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4652-1402</orcidid><orcidid>https://orcid.org/0000-0001-7901-5288</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2020-02, Vol.51 (2), p.627-634 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_2268946223 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Benign Biopsy breast Breast cancer Diagnostic systems diffusion Diffusion Magnetic Resonance Imaging Histograms Humans Image Interpretation, Computer-Assisted Kurtosis Lesions Magnetic resonance imaging Mathematical models Medical imaging neoplasms Parameters Population studies Reproducibility of Results Retrospective Studies ROC Curve Sensitivity and Specificity Statistical analysis Statistical tests Tumors |
title | Histogram analysis of diffusion kurtosis imaging based on whole‐volume images of breast lesions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A42%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Histogram%20analysis%20of%20diffusion%20kurtosis%20imaging%20based%20on%20whole%E2%80%90volume%20images%20of%20breast%20lesions&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Li,%20Ting&rft.date=2020-02&rft.volume=51&rft.issue=2&rft.spage=627&rft.epage=634&rft.pages=627-634&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26884&rft_dat=%3Cproquest_cross%3E2334989442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334989442&rft_id=info:pmid/31385429&rfr_iscdi=true |