Persulphide-responsive transcriptional regulation and metabolism in bacteria
Abstract Hydrogen sulphide (H2S) impacts on bacterial growth both positively and negatively; it is utilized as an electron donor for photosynthesis and respiration, and it inactivates terminal oxidases and iron-sulphur clusters. Therefore, bacteria have evolved H2S-responsive detoxification mechanis...
Gespeichert in:
Veröffentlicht in: | Journal of biochemistry (Tokyo) 2020-02, Vol.167 (2), p.125-132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Hydrogen sulphide (H2S) impacts on bacterial growth both positively and negatively; it is utilized as an electron donor for photosynthesis and respiration, and it inactivates terminal oxidases and iron-sulphur clusters. Therefore, bacteria have evolved H2S-responsive detoxification mechanisms for survival. Sulphur assimilation in bacteria has been well studied, and sulphide:quinone oxidoreductase, persulphide dioxygenase, rhodanese and sulphite oxidase were reported as major sulphide-oxidizing enzymes of sulphide assimilation and detoxification pathways. However, how bacteria sense sulphide availability to control H2S and sulphide metabolism remains largely unknown. Recent studies have identified several bacterial (per)sulphide-sensitive transcription factors that change DNA-binding affinity through persulphidation of specific cysteine residues in response to highly reactive sulphur-containing chemicals and reactive sulphur species (RSS). This review focuses on current understanding of the persulphide-responsive transcription factors and RSS metabolism regulated by RSS sensory proteins. |
---|---|
ISSN: | 0021-924X 1756-2651 |
DOI: | 10.1093/jb/mvz063 |