Diseleno3,2-b:2',3'-dselenophene-Containing High-Mobility Conjugated Polymer for Organic Field-Effect Transistors
The synthesis of a diseleno[3,2-b:2',3'-d]selenophene (DSS) composed of three fused selenophenes is reported and it is used as a building block for the preparation of a high hole mobility conjugated polymer (PDSSTV). The polymer demonstrates strong intermolecular interactions even in solut...
Gespeichert in:
Veröffentlicht in: | Advanced science 2019-07, Vol.6 (13), p.1900245 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The synthesis of a diseleno[3,2-b:2',3'-d]selenophene (DSS) composed of three fused selenophenes is reported and it is used as a building block for the preparation of a high hole mobility conjugated polymer (PDSSTV). The polymer demonstrates strong intermolecular interactions even in solution, despite steric repulsion between the large Se atom in DSS and adjacent (Cβ)-H atoms which leads to a partially twisted confirmation PDSSTV. Nevertheless, 2D grazing incidence X-ray diffraction (2D-GIXD) analysis reveals that the polymer tends to align in a highly ordered edge-on orientation after thermal annealing. The polymer demonstrates promising performance in a field-effect transistor device with saturated hole mobility up to 2 cm2 V-1 s-1 obtained under relatively low gate voltages of -30 V. The ultilization of a Se-containing fused aromatic system, therefore, appears to be a promising avenue for the development of high-performance conjugated polymers.The synthesis of a diseleno[3,2-b:2',3'-d]selenophene (DSS) composed of three fused selenophenes is reported and it is used as a building block for the preparation of a high hole mobility conjugated polymer (PDSSTV). The polymer demonstrates strong intermolecular interactions even in solution, despite steric repulsion between the large Se atom in DSS and adjacent (Cβ)-H atoms which leads to a partially twisted confirmation PDSSTV. Nevertheless, 2D grazing incidence X-ray diffraction (2D-GIXD) analysis reveals that the polymer tends to align in a highly ordered edge-on orientation after thermal annealing. The polymer demonstrates promising performance in a field-effect transistor device with saturated hole mobility up to 2 cm2 V-1 s-1 obtained under relatively low gate voltages of -30 V. The ultilization of a Se-containing fused aromatic system, therefore, appears to be a promising avenue for the development of high-performance conjugated polymers. |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.201900245 |