A New Organic Interlayer Spacer for Stable and Efficient 2D Ruddlesden–Popper Perovskite Solar Cells

Two-dimensional (2D) perovskite materials have exhibited great possibilities toward the fabrication of highly efficient and stable solar cell devices. The large degree of structural versatility due to the viable choices of organic interlayer spacers promises new and valuable 2D perovskite species. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-08, Vol.19 (8), p.5237-5245
Hauptverfasser: Li, Zhimin, Liu, Ning, Meng, Ke, Liu, Zhou, Hu, Youdi, Xu, Qiaofei, Wang, Xiao, Li, Shunde, Cheng, Lei, Chen, Gang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional (2D) perovskite materials have exhibited great possibilities toward the fabrication of highly efficient and stable solar cell devices. The large degree of structural versatility due to the viable choices of organic interlayer spacers promises new and valuable 2D perovskite species. Herein, phenyltrimethylammonium (PTA+) is successfully employed as the organic interlayer spacer to prepare the 2D Ruddlesden–Popper perovskite films that exhibit exceptional optoelectronic properties. By adding Cl– ions during film growth, the (PTA)2(MA)3Pb4I13 (MA = methylammonium) perovskite films are effectively prepared with a tunable crystal orientation and film morphology. The optimized devices fabricated with the assistance of Cl– ions deliver the power conversion efficiency up to 11.53%, which is ascribed to the simultaneous reductions of charge transfer resistance and defect-induced charge recombination. Moreover, the PTA-based 2D perovskite solar cells demonstrate remarkable environmental and thermal stabilities.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.9b01652