Organosilica-Based Hollow Mesoporous Bilirubin Nanoparticles for Antioxidation-Activated Self-Protection and Tumor-Specific Deoxygenation-Driven Synergistic Therapy
A major concern about glucose oxidase (GOx)-mediated cancer starvation therapy is its ability to induce serious oxidative damage to normal tissues through the massive production of H2O2 byproducts in the oxygen-involved glucose decomposition reaction, which may be addressed by using a H2O2 scavenger...
Gespeichert in:
Veröffentlicht in: | ACS nano 2019-08, Vol.13 (8), p.8903-8916 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A major concern about glucose oxidase (GOx)-mediated cancer starvation therapy is its ability to induce serious oxidative damage to normal tissues through the massive production of H2O2 byproducts in the oxygen-involved glucose decomposition reaction, which may be addressed by using a H2O2 scavenger, known as an antioxidation agent. Surprisingly, H2O2 removal accelerates the aerobic glycometabolism of tumors by activating the H2O2-dependent “redox signaling” pathway of cancer cells. Simultaneous oxygen depletion further aggravates tumor hypoxia to increase the toxicity of a bioreductive prodrug, such as tirapazamine (TPZ), thereby improving the effectiveness of cancer starvation therapy and bioreductive chemotherapy. Herein, a “nitrogen-protected silica template” method is proposed to design a nanoantioxidant called an organosilica-based hollow mesoporous bilirubin nanoparticle (HMBRN), which can act as an excellent nanocarrier to codeliver GOx and TPZ. In addition to efficient removal of H2O2 for self-protection of normal tissues via antioxidation, GOx/TPZ-coloaded HMBRN can also rapidly deplete intratumoral glucose/oxygen to promote a synergistic starvation-enhanced bioreductive chemotherapeutic effect for the substantial suppression of solid tumor growth. Distinct from the simple combination of two treatments, this study introduces antioxidation-activated self-protection nanotechnology for the significant improvement of tumor-specific deoxygenation-driven synergistic treatment efficacy without additional external energy input, thus realizing the renaissance of precise endogenous cancer therapy with negligible side effects. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.9b02477 |