Egg-laying and brooding stage-specific hormonal response and transcriptional regulation in pituitary of Muscovy duck (Cairina moschata)
ABSTRACT Broodiness is an interesting topic in reproductive biology for its reduced egg production. The strong brooding trait of Muscovy duck has become a major factor restricting the development of its industry. Broody phenotype and environmental factors influencing broodiness in poultry have been...
Gespeichert in:
Veröffentlicht in: | Poultry science 2019-11, Vol.98 (11), p.5287-5296 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Broodiness is an interesting topic in reproductive biology for its reduced egg production. The strong brooding trait of Muscovy duck has become a major factor restricting the development of its industry. Broody phenotype and environmental factors influencing broodiness in poultry have been extensively studied, but the molecular regulation mechanism of broodiness remains unclear. In this research, the Muscovy duck reproductive endocrine hormones and pituitary transcriptome profiles during egg-laying phases (LP) and brooding phases (BP) were studied. During BP (n = 19), prolactin (PRL) levels was higher, while progesterone (P4) and estradiol (E2) were lower as compared to ducks during their LP (n = 20) (P < 0.01). We then examined the pituitary transcriptome of Muscovy duck at the 2 reproductive stages. A total of 398 differentially expressed genes included 20 transcription factors were identified (fold change ≥ 1.5, P < 0.01). There were 109 upregulated and 289 downregulated genes at brooding phases (n = 6) compared with egg-laying phases (n = 6). Real-time quantitative PCR analysis was carried out to verify the transcriptome results. The present study suggested that neuroactive ligand-receptor interaction pathway, calcium signaling pathway, and response to steroid hormones biological process are critical for controlling broodiness in the ducks. Further analysis revealed that SHH, PTGS2, RLN3, and transcription factor AP-1 may act as central signal modulators of hormonal and behavioral regulation mechanism associated with broodiness. |
---|---|
ISSN: | 0032-5791 1525-3171 |
DOI: | 10.3382/ps/pez433 |