Ly6C+ Inflammatory Monocyte Differentiation Partially Mediates Hyperhomocysteinemia-Induced Vascular Dysfunction in Type 2 Diabetic db/db Mice

OBJECTIVE:Hyperhomocysteinemia (HHcy) is a potent risk factor for diabetic cardiovascular diseases. We have previously reported that hyperhomocysteinemia potentiates type 1 diabetes mellitus-induced inflammatory monocyte differentiation, vascular dysfunction, and atherosclerosis. However, the effect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2019-10, Vol.39 (10), p.2097-2119
Hauptverfasser: Fang, Pu, Li, Xinyuan, Shan, Huimin, Saredy, Jason J, Cueto, Ramon, Xia, Jixiang, Jiang, Xiaohua, Yang, Xiao-Feng, Wang, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:OBJECTIVE:Hyperhomocysteinemia (HHcy) is a potent risk factor for diabetic cardiovascular diseases. We have previously reported that hyperhomocysteinemia potentiates type 1 diabetes mellitus-induced inflammatory monocyte differentiation, vascular dysfunction, and atherosclerosis. However, the effects of hyperhomocysteinemia on vascular inflammation in type 2 diabetes mellitus (T2DM) and the underlying mechanism are unknown. APPROACH AND RESULTS:Here, we demonstrate that hyperhomocysteinemia was induced by a high methionine diet in control mice (homocysteine 129 µmol/L), which was further worsened in T2DM db/db mice (homocysteine 180 µmol/L) with aggravated insulin intolerance. Hyperhomocysteinemia potentiated T2DM-induced mononuclear cell, monocyte, inflammatory monocyte (CD11bLy6C), and M1 macrophage differentiation in periphery and aorta, which were rescued by folic acid-based homocysteine-lowering therapy. Moreover, hyperhomocysteinemia exacerbated T2DM-impaired endothelial-dependent aortic relaxation to acetylcholine. Finally, transfusion of bone marrow cells depleted for Ly6C by Ly6c shRNA transduction improved insulin intolerance and endothelial-dependent aortic relaxation in hyperhomocysteinemia+T2DM mice. CONCLUSIONS:Hyperhomocysteinemia potentiated systemic and vessel wall inflammation and vascular dysfunction partially via inflammatory monocyte subset induction in T2DM. Inflammatory monocyte may be a novel therapeutic target for insulin resistance, inflammation, and cardiovascular complications in hyperhomocysteinemia+T2DM.
ISSN:1079-5642
1524-4636
DOI:10.1161/ATVBAHA.119.313138