High-Temperature Antiferroelectric of Lead Iodide Hybrid Perovskites
Antiferroelectrics, characterized by the natural polarization-electric field (P–E) double hysteresis loops, has been developed as a promising branch for energy storage. Here, we present the first antiferroelectric in the booming family of lead iodide hybrid perovskites, (BA)2(EA)2Pb3I10 (1, where BA...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2019-08, Vol.141 (32), p.12470-12474 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antiferroelectrics, characterized by the natural polarization-electric field (P–E) double hysteresis loops, has been developed as a promising branch for energy storage. Here, we present the first antiferroelectric in the booming family of lead iodide hybrid perovskites, (BA)2(EA)2Pb3I10 (1, where BA = n-butylammonium and EA = ethylammonium), which exhibits one of the highest Curie temperatures (∼363 K) for the majority of known molecular systems. Strikingly, its high-temperature antiferroelectricity, triggered by an antipolar alignment of adjacent dipoles, is confirmed by the characteristic double P–E hysteresis loops, thus enabling remarkable energy storage efficiencies in the range of 65%–83%. This merit is almost comparable to those of many inorganic counterparts, suggesting the great potential of 1 for energy storage. Another fascinating attribute is that 1 also acts as a room-temperature biaxial ferroelectric with spontaneous polarization of 5.6 μC·cm–2. As far as we know, this study on the high-temperature antiferroelectric, along with room-temperature biaxial ferroelectricity, is unprecedented for the versatile lead iodide hybrid perovskites, which sheds light on the design of new electric-ordered materials and facilitates their application of high-performance devices. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.9b05124 |