Evaluation of a 3D-printed heterogeneous anthropomorphic head and neck phantom for patient-specific quality assurance in intensity-modulated radiation therapy

We evaluated an anthropomorphic head and neck phantom with tissue heterogeneity, produced using a personal 3D printer, with quality assurance (QA), specific to patients undergoing intensity-modulated radiation therapy (IMRT). Using semi-automatic segmentation, 3D models of bone, soft tissue, and an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiological physics and technology 2019-09, Vol.12 (3), p.351-356
Hauptverfasser: Kadoya, Noriyuki, Abe, Kota, Nemoto, Hikaru, Sato, Kiyokazu, Ieko, Yoshiro, Ito, Kengo, Dobashi, Suguru, Takeda, Ken, Jingu, Keiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We evaluated an anthropomorphic head and neck phantom with tissue heterogeneity, produced using a personal 3D printer, with quality assurance (QA), specific to patients undergoing intensity-modulated radiation therapy (IMRT). Using semi-automatic segmentation, 3D models of bone, soft tissue, and an air-filled cavity were created based on computed tomography (CT) images from patients with head and neck cancer treated with IMRT. For the 3D printer settings, polylactide was used for soft tissue with 100% infill. Bone was reproduced by pouring plaster into the cavity created by the 3D printer. The average CT values for soft tissue and bone were 13.0 ± 144.3 HU and 439.5 ± 137.0 HU, respectively, for the phantom and 12.1 ± 124.5 HU and 771.5 ± 405.3 HU, respectively, for the patient. The gamma passing rate (3%/3 mm) was 96.1% for a nine-field IMRT plan. Thus, this phantom may be used instead of a standard shape phantom for patient-specific QA in IMRT.
ISSN:1865-0333
1865-0341
DOI:10.1007/s12194-019-00527-5