Van der Waals Heterostructured MOF‐on‐MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing
Heterostructured metal—organic framework (MOF)‐on‐MOF thin films have the potential to cascade the various properties of different MOF layers in a sequence to produce functions that cannot be achieved by single MOF layers. An integration method that relies on van der Waals interactions, and which ov...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2019-10, Vol.58 (42), p.14915-14919 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heterostructured metal—organic framework (MOF)‐on‐MOF thin films have the potential to cascade the various properties of different MOF layers in a sequence to produce functions that cannot be achieved by single MOF layers. An integration method that relies on van der Waals interactions, and which overcomes the lattice‐matching limits of reported methods, has been developed. The method deposits molecular sieving Cu‐TCPP (TCPP=5,10,15,20‐tetrakis(4‐carboxyphenyl)porphyrin) layers onto semiconductive Cu‐HHTP (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene) layers to obtain highly oriented MOF‐on‐MOF thin films. For the first time, the properties in different MOF layers were cascaded in sequence to synergistically produce an enhanced device function. Cu‐TCPP‐on‐Cu‐HHTP demonstrated excellent selectivity and the highest response to benzene of the reported recoverable chemiresistive sensing materials that are active at room temperature. This method allows integration of MOFs with cascading properties into advanced functional materials.
MOF‐on‐MOF thin films were prepared from Cu‐HHTP (HHTP=hexahydrotriphenylene) and Cu‐TCPP (TCPP=tetrakis(4‐carboxyphenyl)porphyrin frameworks). The properties of the MOF layers cascade to produce functionality not achieved by a single layer. The MOF‐on‐MOF films demonstrate excellent selectivity and the highest response to benzene among reported recoverable chemiresistive sensing materials active at room temperature. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201907772 |