Distributed attention model of perceptual averaging
The visual system efficiently processes complex and redundant information in a scene despite its limited capacity. One strategy for coping with the complexity and redundancy of a scene is to summarize it by using average information. However, despite its importance, the mechanism of averaging is not...
Gespeichert in:
Veröffentlicht in: | Attention, perception & psychophysics perception & psychophysics, 2020-01, Vol.82 (1), p.63-79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The visual system efficiently processes complex and redundant information in a scene despite its limited capacity. One strategy for coping with the complexity and redundancy of a scene is to summarize it by using average information. However, despite its importance, the mechanism of averaging is not well understood. Here, a distributed attention model of averaging is proposed. Human percept for an object can be disturbed by various sources of internal noise, which can occur either before (early noise) or after (late noise) forming an ensemble perception. The model assumes these noises and reflects noise cancellation by averaging multiple items. The model predicts increased precision for more items with decelerated increments for large set-sizes resulting from late noise. Importantly, the model incorporates mechanisms of attention, which modulate each item’s contribution to the averaging process. The attention in the model also results in saturation of performance increments for small set-sizes because the amount of attention allocated to each item is greater for small set-sizes than for large set-sizes. To evaluate the proposed model, a psychophysical experiment was conducted in which observers’ ability to discriminate average sizes of two displays was measured. The observers’ averaging performance increased at a decreasing rate with small set-sizes and it approached an asymptote for large set-sizes. The model accurately predicted the observed pattern of data. It provides a theoretical framework for interpreting behavioral data and leads to an understanding of the characteristics of ensemble perception. |
---|---|
ISSN: | 1943-3921 1943-393X |
DOI: | 10.3758/s13414-019-01827-z |