Investigating the effect of germanium on the structure of SiO2-ZnO-CaO-SrO-P2O5 glasses and the subsequent influence on glass polyalkenoate cement formation, solubility and bioactivity

A series of germanium (Ge)-containing glasses were synthesized based on a starting glass composition of SiO2-ZnO-CaO-SrO-P2O5. Additions of GeO2 (6 and 12 mol%) were incorporated at the expense of SiO2, which retained the amorphous character, and each glass was processed to present similar particle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2019-10, Vol.103, p.109843-109843, Article 109843
Hauptverfasser: Mokhtari, S., Krull, E.A., Sanders, L.M., Coughlan, A., Mellott, N.P., Gong, Y., Borges, R., Wren, A.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of germanium (Ge)-containing glasses were synthesized based on a starting glass composition of SiO2-ZnO-CaO-SrO-P2O5. Additions of GeO2 (6 and 12 mol%) were incorporated at the expense of SiO2, which retained the amorphous character, and each glass was processed to present similar particle size and surface area. Glass characterization using x-ray photoelectron spectroscopy (XPS) and magic angle spinning nuclear magnetic resonance (MAS-NMR) determined that the addition of GeO2 increased the fraction of lower Q-speciation and subsequently the concentration of non-bridging oxygens (NBO). Glass Polyalkenoate Cements (GPC) were formulated from each glass with 40, 50 and 60 wt% PAA, and presented time dependent solubility profiles (1, 10, 100, 1000 h) for the release of Si4+ (4–140 mg/l), Ca2+ (1–8 mg/l), Zn2+ (
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2019.109843