Sequentially Site-Specific Delivery of Thrombolytics and Neuroprotectant for Enhanced Treatment of Ischemic Stroke
Ischemic stroke caused by a thrombus clog and ischemia is one of the most lethal and disabling cerebrovascular diseases. A sequentially targeted delivery system is highly desired to deliver thrombolytics and neuroprotectant to the site of the thrombus and ischemic penumbra, respectively, to pursue a...
Gespeichert in:
Veröffentlicht in: | ACS nano 2019-08, Vol.13 (8), p.8577-8588 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ischemic stroke caused by a thrombus clog and ischemia is one of the most lethal and disabling cerebrovascular diseases. A sequentially targeted delivery system is highly desired to deliver thrombolytics and neuroprotectant to the site of the thrombus and ischemic penumbra, respectively, to pursue a maximized combinational effect. Inspired by the vital roles that platelets play in thrombus formation, herein, we develop a bioengineered “nanoplatelet” (tP-NP-rtPA/ZL006e) for sequentially site-specific delivery of recombinant tissue plasminogen activator (rtPA) and neuroprotectant (ZL006e) for ischemic stroke treatment. The tP-NP-rtPA/ZL006e consists of a ZL006e-loaded dextran derivative polymeric nanoparticle core and platelet membrane shell conjugated with thrombin-cleavable Tat-peptide-coupled rtPA. Mediated by the cloak of the platelet membrane, tP-NP-rtPA/ZL006e targets the thrombus site and rtPA is triggered to release by the upregulated thrombin. Subsequently, the in situ exposed Tat peptide enhanced penetration of the “nanoplatelet” across the blood–brain barrier into ischemic brain for ZL006e site-specific delivery. From the in vitro and in vivo evaluation, tP-NP-rtPA/ZL006e is demonstrated to significantly enhance the anti-ischemic stroke efficacy in the rat model with middle cerebral artery occlusion, showing a 63 and 72% decrease in ischemic area and reactive oxygen species level compared to that with free drug combination, respectively. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.9b01798 |