The roles of age, parentage and environment on bacterial and algal endosymbiont communities in Acropora corals

The bacterial and microalgal endosymbiont (Symbiodiniaceae spp.) communities associated with corals have important roles in their health and resilience, yet little is known about the factors driving their succession during early coral life stages. Using 16S rRNA gene and ITS2 metabarcoding, we compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2019-08, Vol.28 (16), p.3830-3843
Hauptverfasser: Chan, Wing Yan, Peplow, Lesa M., Menéndez, Patricia, Hoffmann, Ary A., Oppen, Madeleine J. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bacterial and microalgal endosymbiont (Symbiodiniaceae spp.) communities associated with corals have important roles in their health and resilience, yet little is known about the factors driving their succession during early coral life stages. Using 16S rRNA gene and ITS2 metabarcoding, we compared these communities in four Acropora coral species and their hybrids obtained from two laboratory crosses (Acropora tenuis × Acropora loripes and Acropora sarmentosa × Acropora florida) across the parental, recruit (7 months old) and juvenile (2 years old) life stages. We tested whether microbiomes differed between (a) life stages, (b) hybrids and purebreds, and (c) treatment conditions (ambient/elevated temperature and pCO2). Microbial communities of early life stage corals were highly diverse, lacked host specificity and were primarily determined by treatment conditions. Over time, a winnowing process occurred, and distinct microbial communities developed between the two species pair crosses by 2 years of age, irrespective of hybrid or purebred status. These findings suggest that the microbial communities of corals have a period of flexibility prior to adulthood, which can be valuable to future research aimed at the manipulation of coral microbial communities.
ISSN:0962-1083
1365-294X
DOI:10.1111/mec.15187