RNA G-quadruplex as supramolecular carrier for cancer-selective delivery
[Display omitted] Nucleic acid aptamers have emerged as an attractive class of carrier molecules due to their ability to bind with high affinity to specific ligands; their high chemical flexibility; as well as tissue penetration capability. RNA G-quadruplex (rG4) sequences have been described as str...
Gespeichert in:
Veröffentlicht in: | European journal of pharmaceutics and biopharmaceutics 2019-09, Vol.142, p.473-479 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Nucleic acid aptamers have emerged as an attractive class of carrier molecules due to their ability to bind with high affinity to specific ligands; their high chemical flexibility; as well as tissue penetration capability. RNA G-quadruplex (rG4) sequences have been described as structures with high stability and selectivity towards cancer cells. Recently, precursor microRNAs (pre-miRNAs) have been described as new G4 forming molecules. Surface nucleolin (NCL) is a known target of aptamer G4 AS1411 and is overexpressed on prostate cancer cells when compared with normal cells. We have shown that the sequence 5′ GGGAGGGAGGGACGGG 3′ found in pre-miR-149 forms a rG4 parallel structure, which can bind NCL. Also, another rG4 sequence with a longer loop was evaluated in terms of G4 formation, stabilization and binding affinity to NCL.
Both rG4s sequences were studied as supramolecular carriers for the cancer-selective delivery of acridine ligand C8. The rG4s-C8 complexes showed high affinity (KD = 10−6 M) and stabilization (Tm > 30 °C). The affinity of the rG4s-C8 complexes against NCL was in the low nanomolar range, indicating that C8 did not affect NCL binding. Noteworthy, the short loop rG4-C8 complex showed selective antiproliferative effects in prostate cancer cells when compared with normal prostatic cells. The stability and nuclease resistance of rG4 and rG4-C8 complex were evaluated in biological conditions and revealed the maintenance of G4 structure and complex stability. Furthermore, confocal microscopy studies confirmed the potential of rG4s-C8 complexes in the targeting of prostate cancer cells.
Overall, it is here demonstrated that the rG4 found in pre-miR-149 can be used as a cancer-selective delivery carrier of C8 to prostate cancer cells. |
---|---|
ISSN: | 0939-6411 1873-3441 |
DOI: | 10.1016/j.ejpb.2019.07.017 |