Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease
Abstract Background and Aims Despite the presence of neutrophil extracellular traps [NETs] in inflamed colon having been confirmed, the role of NETs, especially the circulating NETs, in the progression and thrombotic tendency of inflammatory bowel disease [IBD] remains elusive. We extended our previ...
Gespeichert in:
Veröffentlicht in: | Journal of Crohn's and colitis 2020-02, Vol.14 (2), p.240-253 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Background and Aims
Despite the presence of neutrophil extracellular traps [NETs] in inflamed colon having been confirmed, the role of NETs, especially the circulating NETs, in the progression and thrombotic tendency of inflammatory bowel disease [IBD] remains elusive. We extended our previous study to prove that NETs constitute a central component in the progression and prothrombotic state of IBD.
Methods
In all 48 consecutive patients with IBD were studied. Acute colitis was induced by the treatment of C57BL/6 mice with 3.5% dextran sulphate sodium [DSS] in drinking water for 6 days. Peripheral blood neutrophils and sera were collected from IBD patients and murine colitis models. Exposed phosphatidylserine [PS] was analysed with flow cytometry and confocal microscopy. Procoagulant activity was evaluated using clotting time, purified coagulation complex, and fibrin formation assays.
Results
We observed higher plasma NET levels and presence of NETs in colon tissue in patients with active IBD. More importantly, NETs were induced in mice with DSS colitis, and inhibition of NET release attenuated colitis as well as colitis-associated tumorigenesis. NET degradation through DNase administration decreased cytokine levels during DSS-induced colitis. In addition, DNase treatment also significantly attenuated the accelerated thrombus formation and platelet activation observed in DSS-induced colitis. NETs triggered PS-positive microparticle release and PS exposure on platelets and endothelial cells partially through TLR2 and TLR4, converting them to a procoagulant phenotype.
Conclusions
NETs exacerbate colon tissue damage and drive thrombotic tendency during active IBD. Strategies directed against NET formation may offer a potential therapeutic approach for the treatment of IBD. |
---|---|
ISSN: | 1873-9946 1876-4479 |
DOI: | 10.1093/ecco-jcc/jjz132 |