All-Printed Substrate-Versatile Microsupercapacitors with Thermoreversible Self-Protection Behavior Based on Safe Sol–Gel Transition Electrolytes
Thermal runaway has always been a significant safety issue that high-performance electronic devices urgently need to solve. These existing strategies are limited by the lack of reversibility and low conductivity. Here, we propose a novel thermoreversible self-protection microsupercapacitor (TS-MSC)...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-08, Vol.11 (33), p.29960-29969 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29969 |
---|---|
container_issue | 33 |
container_start_page | 29960 |
container_title | ACS applied materials & interfaces |
container_volume | 11 |
creator | Ma, Shaoshuai Shi, Yunhui Zhang, Yan Zheng, Liting Zhang, Qian Xu, Xinhua |
description | Thermal runaway has always been a significant safety issue that high-performance electronic devices urgently need to solve. These existing strategies are limited by the lack of reversibility and low conductivity. Here, we propose a novel thermoreversible self-protection microsupercapacitor (TS-MSC) based on a thermoresponsive polymer electrolyte to prevent thermal runaway. When heating above the low critical solution temperature (LCST), a gelation process occurs in the smart electrolyte and effectively inhibits the migration of ions, leading to a decreased specific capacitance and an increased internal resistance of the MSC. However, the electrolyte transforms to a solution state at room temperature in which ions can freely migrate. Benefiting by sol–gel transition of the smart electrolyte, the TS-MSCs can exhibit different electrochemical performances at elevated temperatures, demonstrating an active method of achieving thermoreversible and dynamic self-protection. In addition, 3D printing technology and substrate versatility provide an attractive method in the design of integrated micropower devices. Therefore, such functional TS-MSCs offer a promising strategy to solve the safety issues of the nowadays portable microelectronic devices. |
doi_str_mv | 10.1021/acsami.9b09498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2261279528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261279528</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-847510a92c96a2e664ccb2033178a53c1d4e5ba39dac929e6a4220df6157c3d73</originalsourceid><addsrcrecordid>eNp1kctq3DAUhkVpaS7NtsviZSl4qpsvWiZDbjAlgZlma47lY0ZBtqaSnDK7vEPeME8SJTPNrisdxPd_cM5PyFdGZ4xy9hN0gMHMVEuVVPUHcsiUlHnNC_7xfZbygByFcE9pKTgtPpMDwQTnQlSH5OnU2vzWmzFily2nNkQPEfM79AGisZj9Mtq7MG3Qa9iANtH5kP01cZ2t1ugH5_EhsaZN6BJtn1wuoo7GjdkZruHBOJ-dQUj29LOEPmHOPj8-XaLNVh7GYN7Yc5tC3tltxPCFfOrBBjzZv8fk98X5an6VL24ur-enixyEoDGvZVUwCoprVQLHspRat5wKwaoaCqFZJ7FoQagOtOIKS5Cc064vWVFp0VXimHzfeTfe_ZkwxGYwQaO1MKKbQsN5yXilCl4ndLZDX48RPPbNxpsB_LZhtHktotkV0eyLSIFve_fUDti94_8un4AfOyAFm3s3-TGt-j_bC4YUlzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261279528</pqid></control><display><type>article</type><title>All-Printed Substrate-Versatile Microsupercapacitors with Thermoreversible Self-Protection Behavior Based on Safe Sol–Gel Transition Electrolytes</title><source>American Chemical Society Journals</source><creator>Ma, Shaoshuai ; Shi, Yunhui ; Zhang, Yan ; Zheng, Liting ; Zhang, Qian ; Xu, Xinhua</creator><creatorcontrib>Ma, Shaoshuai ; Shi, Yunhui ; Zhang, Yan ; Zheng, Liting ; Zhang, Qian ; Xu, Xinhua</creatorcontrib><description>Thermal runaway has always been a significant safety issue that high-performance electronic devices urgently need to solve. These existing strategies are limited by the lack of reversibility and low conductivity. Here, we propose a novel thermoreversible self-protection microsupercapacitor (TS-MSC) based on a thermoresponsive polymer electrolyte to prevent thermal runaway. When heating above the low critical solution temperature (LCST), a gelation process occurs in the smart electrolyte and effectively inhibits the migration of ions, leading to a decreased specific capacitance and an increased internal resistance of the MSC. However, the electrolyte transforms to a solution state at room temperature in which ions can freely migrate. Benefiting by sol–gel transition of the smart electrolyte, the TS-MSCs can exhibit different electrochemical performances at elevated temperatures, demonstrating an active method of achieving thermoreversible and dynamic self-protection. In addition, 3D printing technology and substrate versatility provide an attractive method in the design of integrated micropower devices. Therefore, such functional TS-MSCs offer a promising strategy to solve the safety issues of the nowadays portable microelectronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b09498</identifier><identifier>PMID: 31322337</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2019-08, Vol.11 (33), p.29960-29969</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-847510a92c96a2e664ccb2033178a53c1d4e5ba39dac929e6a4220df6157c3d73</citedby><cites>FETCH-LOGICAL-a330t-847510a92c96a2e664ccb2033178a53c1d4e5ba39dac929e6a4220df6157c3d73</cites><orcidid>0000-0002-7864-3044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b09498$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b09498$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31322337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Shaoshuai</creatorcontrib><creatorcontrib>Shi, Yunhui</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zheng, Liting</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Xu, Xinhua</creatorcontrib><title>All-Printed Substrate-Versatile Microsupercapacitors with Thermoreversible Self-Protection Behavior Based on Safe Sol–Gel Transition Electrolytes</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Thermal runaway has always been a significant safety issue that high-performance electronic devices urgently need to solve. These existing strategies are limited by the lack of reversibility and low conductivity. Here, we propose a novel thermoreversible self-protection microsupercapacitor (TS-MSC) based on a thermoresponsive polymer electrolyte to prevent thermal runaway. When heating above the low critical solution temperature (LCST), a gelation process occurs in the smart electrolyte and effectively inhibits the migration of ions, leading to a decreased specific capacitance and an increased internal resistance of the MSC. However, the electrolyte transforms to a solution state at room temperature in which ions can freely migrate. Benefiting by sol–gel transition of the smart electrolyte, the TS-MSCs can exhibit different electrochemical performances at elevated temperatures, demonstrating an active method of achieving thermoreversible and dynamic self-protection. In addition, 3D printing technology and substrate versatility provide an attractive method in the design of integrated micropower devices. Therefore, such functional TS-MSCs offer a promising strategy to solve the safety issues of the nowadays portable microelectronic devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctq3DAUhkVpaS7NtsviZSl4qpsvWiZDbjAlgZlma47lY0ZBtqaSnDK7vEPeME8SJTPNrisdxPd_cM5PyFdGZ4xy9hN0gMHMVEuVVPUHcsiUlHnNC_7xfZbygByFcE9pKTgtPpMDwQTnQlSH5OnU2vzWmzFily2nNkQPEfM79AGisZj9Mtq7MG3Qa9iANtH5kP01cZ2t1ugH5_EhsaZN6BJtn1wuoo7GjdkZruHBOJ-dQUj29LOEPmHOPj8-XaLNVh7GYN7Yc5tC3tltxPCFfOrBBjzZv8fk98X5an6VL24ur-enixyEoDGvZVUwCoprVQLHspRat5wKwaoaCqFZJ7FoQagOtOIKS5Cc064vWVFp0VXimHzfeTfe_ZkwxGYwQaO1MKKbQsN5yXilCl4ndLZDX48RPPbNxpsB_LZhtHktotkV0eyLSIFve_fUDti94_8un4AfOyAFm3s3-TGt-j_bC4YUlzU</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Ma, Shaoshuai</creator><creator>Shi, Yunhui</creator><creator>Zhang, Yan</creator><creator>Zheng, Liting</creator><creator>Zhang, Qian</creator><creator>Xu, Xinhua</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7864-3044</orcidid></search><sort><creationdate>20190821</creationdate><title>All-Printed Substrate-Versatile Microsupercapacitors with Thermoreversible Self-Protection Behavior Based on Safe Sol–Gel Transition Electrolytes</title><author>Ma, Shaoshuai ; Shi, Yunhui ; Zhang, Yan ; Zheng, Liting ; Zhang, Qian ; Xu, Xinhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-847510a92c96a2e664ccb2033178a53c1d4e5ba39dac929e6a4220df6157c3d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shaoshuai</creatorcontrib><creatorcontrib>Shi, Yunhui</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Zheng, Liting</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Xu, Xinhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shaoshuai</au><au>Shi, Yunhui</au><au>Zhang, Yan</au><au>Zheng, Liting</au><au>Zhang, Qian</au><au>Xu, Xinhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-Printed Substrate-Versatile Microsupercapacitors with Thermoreversible Self-Protection Behavior Based on Safe Sol–Gel Transition Electrolytes</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-08-21</date><risdate>2019</risdate><volume>11</volume><issue>33</issue><spage>29960</spage><epage>29969</epage><pages>29960-29969</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Thermal runaway has always been a significant safety issue that high-performance electronic devices urgently need to solve. These existing strategies are limited by the lack of reversibility and low conductivity. Here, we propose a novel thermoreversible self-protection microsupercapacitor (TS-MSC) based on a thermoresponsive polymer electrolyte to prevent thermal runaway. When heating above the low critical solution temperature (LCST), a gelation process occurs in the smart electrolyte and effectively inhibits the migration of ions, leading to a decreased specific capacitance and an increased internal resistance of the MSC. However, the electrolyte transforms to a solution state at room temperature in which ions can freely migrate. Benefiting by sol–gel transition of the smart electrolyte, the TS-MSCs can exhibit different electrochemical performances at elevated temperatures, demonstrating an active method of achieving thermoreversible and dynamic self-protection. In addition, 3D printing technology and substrate versatility provide an attractive method in the design of integrated micropower devices. Therefore, such functional TS-MSCs offer a promising strategy to solve the safety issues of the nowadays portable microelectronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31322337</pmid><doi>10.1021/acsami.9b09498</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7864-3044</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2019-08, Vol.11 (33), p.29960-29969 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2261279528 |
source | American Chemical Society Journals |
title | All-Printed Substrate-Versatile Microsupercapacitors with Thermoreversible Self-Protection Behavior Based on Safe Sol–Gel Transition Electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-Printed%20Substrate-Versatile%20Microsupercapacitors%20with%20Thermoreversible%20Self-Protection%20Behavior%20Based%20on%20Safe%20Sol%E2%80%93Gel%20Transition%20Electrolytes&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ma,%20Shaoshuai&rft.date=2019-08-21&rft.volume=11&rft.issue=33&rft.spage=29960&rft.epage=29969&rft.pages=29960-29969&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b09498&rft_dat=%3Cproquest_cross%3E2261279528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261279528&rft_id=info:pmid/31322337&rfr_iscdi=true |