All-Printed Substrate-Versatile Microsupercapacitors with Thermoreversible Self-Protection Behavior Based on Safe Sol–Gel Transition Electrolytes
Thermal runaway has always been a significant safety issue that high-performance electronic devices urgently need to solve. These existing strategies are limited by the lack of reversibility and low conductivity. Here, we propose a novel thermoreversible self-protection microsupercapacitor (TS-MSC)...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-08, Vol.11 (33), p.29960-29969 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermal runaway has always been a significant safety issue that high-performance electronic devices urgently need to solve. These existing strategies are limited by the lack of reversibility and low conductivity. Here, we propose a novel thermoreversible self-protection microsupercapacitor (TS-MSC) based on a thermoresponsive polymer electrolyte to prevent thermal runaway. When heating above the low critical solution temperature (LCST), a gelation process occurs in the smart electrolyte and effectively inhibits the migration of ions, leading to a decreased specific capacitance and an increased internal resistance of the MSC. However, the electrolyte transforms to a solution state at room temperature in which ions can freely migrate. Benefiting by sol–gel transition of the smart electrolyte, the TS-MSCs can exhibit different electrochemical performances at elevated temperatures, demonstrating an active method of achieving thermoreversible and dynamic self-protection. In addition, 3D printing technology and substrate versatility provide an attractive method in the design of integrated micropower devices. Therefore, such functional TS-MSCs offer a promising strategy to solve the safety issues of the nowadays portable microelectronic devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b09498 |