The Materials of Mastication: Material Science of the Humble Tooth

Dental functional morphology, as a field, represents a confluence of materials science and biology. Modern methods in materials testing have been influential in driving the understanding of dental tissues and tooth functionality. Here we present a review of dental enamel, the outermost tissue of tee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative and comparative biology 2019-12, Vol.59 (6), p.1681-1689
Hauptverfasser: van Casteren, Adam, Crofts, Stephanie B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dental functional morphology, as a field, represents a confluence of materials science and biology. Modern methods in materials testing have been influential in driving the understanding of dental tissues and tooth functionality. Here we present a review of dental enamel, the outermost tissue of teeth. Enamel is the hardest biological tissue and exhibits remarkable resilience even when faced with a variety of mechanical threats. In the light of recent work, we progress the argument that the risk of mechanical degradation across multiple scales exhibits a strong and continued selection pressure on the structural organization of enamel. The hierarchical nature of enamel structure presents a range of scale-dependent toughening mechanisms and provides a means by which natural selection can drive the specialization of this tissue from nanoscale reorganization to whole tooth morphology. There has been much learnt about the biomechanics of enamel recently, yet our understanding of the taxonomic diversity of this tissue is still lacking and may form an interesting avenue for future research.
ISSN:1540-7063
1557-7023
DOI:10.1093/icb/icz129