Conformational behavior of a semiflexible dipolar chain with a variable relative size of charged groups via molecular dynamics simulations
The conformational behavior of an isolated semiflexible dipolar chain has been studied by molecular dynamics simulations. The dipolar chain was modeled as a backbone chain of charged beads, each containing an oppositely charged unit connected to it by a rigid spring. The main focus was on the effect...
Gespeichert in:
Veröffentlicht in: | Soft matter 2019, Vol.15 (30), p.6073-6085 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The conformational behavior of an isolated semiflexible dipolar chain has been studied by molecular dynamics simulations. The dipolar chain was modeled as a backbone chain of charged beads, each containing an oppositely charged unit connected to it by a rigid spring. The main focus was on the effect of the backbone chain rigidity and the size of the charged groups on the morphology of the collapsed states of the chain formed in low-polar media where the electrostatic interactions are essential. It has been found that the stable globular conformations of the long chain of N = 256 backbone beads are a toroid and an elliptical globule. The macroscopic parameters (such as the radius of gyration and shape factors) as well as the local characteristics of these conformations (radial density distributions of ions, orientational correlations of chain segments, dipoles etc.) are studied depending on the chain stiffness. The regions of stability of a torus and an elliptical globule are found for the dipolar chains with variable dipole length and stiffness, which depend on the strength of electrostatic interactions. It has been shown that a size asymmetry of oppositely charged beads destabilizes globular states favoring elongated chain conformations. A coexistence of various metastable states was demonstrated for shorter chains of N = 128, 64, and 32. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c9sm00909d |