Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model

[Display omitted] Osteosarcoma management continues to lack the appropriate prognostic tools to assign personalised treatment. This leaves non-responders to standard care vulnerable to recurring disease and pulmonary metastases. Developing 3D in vitro disease models to serve as a test bed for person...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2019-09, Vol.96, p.247-257
Hauptverfasser: Pavlou, M., Shah, M., Gikas, P., Briggs, T., Roberts, S.J., Cheema, U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Osteosarcoma management continues to lack the appropriate prognostic tools to assign personalised treatment. This leaves non-responders to standard care vulnerable to recurring disease and pulmonary metastases. Developing 3D in vitro disease models to serve as a test bed for personalised treatment is a promising approach to address this issue. This study describes the generation of 3D osteosarcoma models termed “tumouroids”, which are geometrically compartmentalised to reproduce the bone cancer mass and its surrounding. Although the tumour microenvironment impacts osteosarcoma in many ways, this model focussed on interrogating the influence of a biomimetic matrix on tumour cell behaviour. The 3D matrix was supplemented with the bone-marrow proteins laminin, fibronectin and NuOss® bone granules. This led to increased invasion of osteosarcoma cell aggregates from within the bone-like matrix into the surrounding acellular bone marrow-like ECM. The presence of bone granules also yielded an atypical molecular profile of osteosarcoma cells, suggesting malignant metabolic reprogramming. Changes include decreased MMP-9 (p 
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2019.07.011