Biophysical modeling of wave propagation phenomena: experimental determination of pulse wave velocity in viscous fluid-filled elastic tubes in a gravitation field

Biophysical understanding of arterial hemodynamics plays an important role in proper medical diagnosis and investigation of cardiovascular disease pathogens. One of the major cardiovascular parameters is pulse wave velocity (PWV), which depends on the mechanical properties of the arterial wall. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European biophysics journal 2019-07, Vol.48 (5), p.407-411
Hauptverfasser: Žikić, Dejan, Stojadinović, Bojana, Nestorović, Zorica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biophysical understanding of arterial hemodynamics plays an important role in proper medical diagnosis and investigation of cardiovascular disease pathogens. One of the major cardiovascular parameters is pulse wave velocity (PWV), which depends on the mechanical properties of the arterial wall. The PWV contains information on the condition of the cardiovascular system as well as its physiological age. In humans and most animals, blood flow through the blood vessels is affected by several internal and external forces. The most influencing external force on blood flow is gravity. In the upright position of the body, blood moves from heart to head, opposite to gravity, and from the heart to the legs, in direction of the gravitational force. To investigate how gravity affects PWV, we have developed a biophysical model of cardiovascular system that simulates blood flow in the upright position of the body. The paper presents the results of measurement of PWV in an elastic tube filled with fluids of different viscosities in the gravitational field.
ISSN:0175-7571
1432-1017
DOI:10.1007/s00249-019-01376-1