Construction of cathepsin B-responsive fluorescent probe and photosensitizer using a ferrocenyl boron dipyrromethene dark quencher

A ferrocenyl boron dipyrromethene (BODIPY) has been developed and utilized as a dark quencher to construct a cathepsin B-responsive fluorescent probe and photosensitizer. The smart fluorescent probe and photosensitizer (Pc-FcQ) contains a zinc(II) phthalocyanine as the fluorescent and photosensitizi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of medicinal chemistry 2019-10, Vol.179, p.828-836
Hauptverfasser: Wang, Qiong, Yu, Ligang, Wong, Roy C.H., Lo, Pui-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A ferrocenyl boron dipyrromethene (BODIPY) has been developed and utilized as a dark quencher to construct a cathepsin B-responsive fluorescent probe and photosensitizer. The smart fluorescent probe and photosensitizer (Pc-FcQ) contains a zinc(II) phthalocyanine as the fluorescent and photosensitizing unit which is conjugated to the ferrocenyl BODIPY dark quencher via a cathepsin B-cleavable peptide substrate [Gly-Phe-Leu-Gly-Lys]. The photosensitizing properties of Pc-FcQ, including fluorescence and singlet oxygen generation, are significantly quenched through energy transfer to the BODIPY unit and subsequently by the photoinduced electron transfer from the nearby ferrocenyl moiety. Upon exposure of cathepsin B in human hepatocellular carcinoma HepG cells, the fluorescence emission of Pc-FcQ could be restored, indicating the cleavage of the peptide substrate and the separation of the phthalocyanine and ferrocenyl BODIPY unit. However, the intracellular fluorescence intensity of Pc-FcQ was largely diminished after the cells were pre-treated with cathepsin B inhibitor. Its intracellular fluorescence intensity was comparable to that of the control compound in which the peptide substrate was replaced by the non-cleavable one [Gly-Gly-Gly-Gly-Lys]. The singlet oxygen generation of Pc-FcQ was also examined in HepG2 cells as reflected by the cytotoxicity assay. The Pc-FcQ exhibited higher potency when compared with the non-cleavable analogue due to the cleavage of peptide substrate and the detachment of the BODIPY dark quencher from the phthalocyanine. The activation of the Pc-FcQ was also demonstrated in tumor-bearing nude mice. After intratumoral injection of Pc-FcQ, the fluorescence intensity at the tumor region increased gradually over 10 h as a result of the detachment of the dark quencher upon the action of cathepsin B. All the results suggest that this ferrocenyl BODIPY could serve as an efficient dark quencher and the resulting Pc-FcQ could act as the cathepsin B-responsive fluorescent probe and activatable photosensitizer. [Display omitted] •New ferrocenyl BODIPY dark quencher was developed.•The ferrocenyl BODIPY was used to construct a novel cathepsin B-activatable photosensitizer Pc-FcQ.•The photosensitizing properties of Pc-FcQ were quenched via energy transfer and photoinduced electron transfer mechanisms.•Pc-FcQ exhibited cathepsin B-responsive fluorescence emission and singlet oxygen generation.•The fluorescence emission of Pc-FcQ was activated in
ISSN:0223-5234
1768-3254
DOI:10.1016/j.ejmech.2019.06.082