Processing raspberry-flavored whey drink using ohmic heating: Physical, thermal and microstructural considerations
The effect of ohmic heating processing (10, 100, 1000 Hz - 25 V;45, 60, 80 V - 60 Hz until 65 °C-30 min) on physical (color, rheology, particle size diameter), thermal (differential scanning calorimetry, DSC), physicochemical (time domain nuclear magnetic resonance, TD-NMR) and microstructural (opti...
Gespeichert in:
Veröffentlicht in: | Food research international 2019-09, Vol.123, p.20-26 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of ohmic heating processing (10, 100, 1000 Hz - 25 V;45, 60, 80 V - 60 Hz until 65 °C-30 min) on physical (color, rheology, particle size diameter), thermal (differential scanning calorimetry, DSC), physicochemical (time domain nuclear magnetic resonance, TD-NMR) and microstructural (optical microscopy) properties of raspberry-flavored whey drink was investigated. The samples were submitted to an ohmic system and conventional pasteurization (65 °C-30 min). Both processing led to increases in the color parameters (C*, h* and ∆E*) in the first 30 min. For the treatments, 10 Hz-25 V and 1000 Hz-25 V, more viscous, and consequently increased D[4,3] and D[3,2] values were observed, and similar results were obtained for the DSC behavior. The microstructure confirmed aggregation of cell structure in those configurations (10 Hz and 1000 Hz-25 V). OH, parameters for both ohmic configurations have an impact in all the evaluated parameters for raspberry-flavored whey drink, which can be interesting for the dairy industry.
[Display omitted]
•Whey-raspberry flavored beverage submitted to Ohmic Heating.•Increased viscosity and D[4,3] and D[3,2] values and color parameters.•Aggregation of cell structure.•Frequency and voltage proportionated different thermal behavior. |
---|---|
ISSN: | 0963-9969 1873-7145 |
DOI: | 10.1016/j.foodres.2019.04.045 |