Machine Learning Topological Phases with a Solid-State Quantum Simulator

We report an experimental demonstration of a machine learning approach to identify exotic topological phases, with a focus on the three-dimensional chiral topological insulators. We show that the convolutional neural networks-a class of deep feed-forward artificial neural networks with widespread ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-05, Vol.122 (21), p.210503-210503, Article 210503
Hauptverfasser: Lian, Wenqian, Wang, Sheng-Tao, Lu, Sirui, Huang, Yuanyuan, Wang, Fei, Yuan, Xinxing, Zhang, Wengang, Ouyang, Xiaolong, Wang, Xin, Huang, Xianzhi, He, Li, Chang, Xiuying, Deng, Dong-Ling, Duan, Luming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report an experimental demonstration of a machine learning approach to identify exotic topological phases, with a focus on the three-dimensional chiral topological insulators. We show that the convolutional neural networks-a class of deep feed-forward artificial neural networks with widespread applications in machine learning-can be trained to successfully identify different topological phases protected by chiral symmetry from experimental raw data generated with a solid-state quantum simulator. Our results explicitly showcase the exceptional power of machine learning in the experimental detection of topological phases, which paves a way to study rich topological phenomena with the machine learning toolbox.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.122.210503