The Role of Fibers Within the Tibial Attachment of the Anterior Cruciate Ligament in Restraining Tibial Displacement

To evaluate the load-bearing functions of the fibers of the anterior cruciate ligament (ACL) tibial attachment in restraining tibial anterior translation, internal rotation, and combined anterior and internal rotation laxities in a simulated pivot-shift test. Twelve knees were tested using a robot....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arthroscopy 2019-07, Vol.35 (7), p.2101-2111
Hauptverfasser: Lord, Breck R., El-Daou, Hadi, Zdanowicz, Urszula, Śmigielski, Robert, Amis, Andrew A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To evaluate the load-bearing functions of the fibers of the anterior cruciate ligament (ACL) tibial attachment in restraining tibial anterior translation, internal rotation, and combined anterior and internal rotation laxities in a simulated pivot-shift test. Twelve knees were tested using a robot. Laxities tested were: anterior tibial translation (ATT), internal rotation (IR), and coupled translations and rotations during a simulated pivot-shift. The kinematics of the intact knee was replayed after sequentially transecting 9 segments of the ACL attachment and fibers entering the lateral gutter, measuring their contributions to restraining laxity. The center of effort (COE) of the ACL force transmitted to the tibia was calculated. A blinded anatomic analysis identified the densest fiber area in the attachment of the ACL and thus its centroid (center of area). This centroid was compared with the biomechanical COE. The anteromedial tibial fibers were the primary restraint of ATT (84% across 0° to 90° flexion) and IR (61%) during isolated and coupled displacements, except for the pivot-shift and ATT in extension. The lateral gutter resisted 28% of IR at 90° flexion. The anteromedial fibers showed significantly greater restraint of simulated pivot-shift rotations than the central and posterior fibers (P < .05). No significant differences (all
ISSN:0749-8063
1526-3231
DOI:10.1016/j.arthro.2019.01.058