Wave propagation in a stratified shear flow
The linearized initial-value problem for a two-dimensional, unbounded, exponentially stratified, plane Couette flow is considered. The solution is used to evaluate the evolution of wave-packet perturbations to the mean flow for all Richardson numbers J > ¼, demonstrating that a consistent wave-pa...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 1975-09, Vol.71 (1), p.89-104 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The linearized initial-value problem for a two-dimensional, unbounded, exponentially stratified, plane Couette flow is considered. The solution is used to evaluate the evolution of wave-packet perturbations to the mean flow for all Richardson numbers J > ¼, demonstrating that a consistent wave-packet approach to wave propagation in these flows is possible for all J > ¼. It is found that the vertical influence of a wave-packet perturbation is limited to a distance of order (J − ¼)½/k0, where k0 is the magnitude of the initial central wave vector. These results are used to clarify the J [gsim ] ¼ conclusions of an earlier treatment by Booker & Bretherton. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112075002443 |