Quantum Lyapunov exponents beyond continuous measurements

Quantum systems, when interacting with their environments, may exhibit nonequilibrium states that are tempting to be interpreted as quantum analogs of chaotic attractors. However, different from the Hamiltonian case, the toolbox for quantifying dissipative quantum chaos remains limited. In particula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2019-06, Vol.29 (6), p.063130-063130
Hauptverfasser: Yusipov, I. I., Vershinina, O. S., Denisov, S., Kuznetsov, S. P., Ivanchenko, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum systems, when interacting with their environments, may exhibit nonequilibrium states that are tempting to be interpreted as quantum analogs of chaotic attractors. However, different from the Hamiltonian case, the toolbox for quantifying dissipative quantum chaos remains limited. In particular, quantum generalizations of Lyapunov exponents, the main quantifiers of classical chaos, are established only within the framework of continuous measurements. We propose an alternative generalization based on the unraveling of quantum master equation into an ensemble of “quantum trajectories,” by using the so-called Monte Carlo wave-function method. We illustrate the idea with a periodically modulated open quantum dimer and demonstrate that the transition to quantum chaos matches the period-doubling route to chaos in the corresponding mean-field system.
ISSN:1054-1500
1089-7682
DOI:10.1063/1.5094324