Shedding Light into the Subcutis: A Mass Spectrometry Based Immunocapture Assay Enabling Full Characterization of Therapeutic Antibodies after Injection in Vivo

An understanding of what happens to therapeutic antibodies in vivo after subcutaneous injection is of high interest. Therefore, we applied the open flow microperfusion technique to extract interstitial fluid from the subcutaneous tissue. In order to analyze those biological samples, a specific and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2019-08, Vol.91 (15), p.9490-9499
Hauptverfasser: Doell, Annika, Schmitz, Oliver J, Hollmann, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An understanding of what happens to therapeutic antibodies in vivo after subcutaneous injection is of high interest. Therefore, we applied the open flow microperfusion technique to extract interstitial fluid from the subcutaneous tissue. In order to analyze those biological samples, a specific and sensitive workflow was required. In this study, we present a complete workflow that enables full characterization of therapeutic antibodies after subcutaneous injection. Compared to classical pharmacokinetic approaches where only a limited number of peptides are detected, our workflow provides full sequence coverage and even enables the identification of potential quality attributes. The efficiency to purify therapeutic antibodies from biological matrixes of two different antibody capture molecules and two types of magnetic beads was compared. Furthermore, several desalting protocols were tested in the development of a miniaturized peptide map procedure. The best results were achieved using a commercial anti-human capture mAb fragment in combination with streptavidin coated magnetic beads, providing capture efficiencies of 90–100%. The optimized peptide map protocol that requires
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.9b00159