3D-Printed Chemiresistive Sensor Array on Nanowire CuO/Cu2O/Cu Heterojunction Nets

In this work, the one-step three-dimensional (3D) printing of 20 nm nanowire (NW)-covered CuO/Cu2O/Cu microparticles (MPs) with diameters of 15–25 μm on the surface of the glass substrate forming an ordered net is successfully reported for the first time. 3D-printed Cu MP-based stripes formed nonpla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-07, Vol.11 (28), p.25508-25515
Hauptverfasser: Siebert, Leonard, Lupan, Oleg, Mirabelli, Mattia, Ababii, Nicolai, Terasa, Maik-Ivo, Kaps, Sören, Cretu, Vasilii, Vahl, Alexander, Faupel, Franz, Adelung, Rainer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the one-step three-dimensional (3D) printing of 20 nm nanowire (NW)-covered CuO/Cu2O/Cu microparticles (MPs) with diameters of 15–25 μm on the surface of the glass substrate forming an ordered net is successfully reported for the first time. 3D-printed Cu MP-based stripes formed nonplanar CuO/Cu2O/Cu heterojunctions after thermal annealing at 425 °C for 2 h in air and were fully covered with a 20 nm NW net bridging MPs with external Au contacts. The morphological, vibrational, chemical, and structural investigations were performed in detail, showing the high crystallinity of the NWs and 3D-printed CuO/Cu2O/Cu heterojunction lines, as well as the growth of CuO NWs on the surface of MPs. The gas-sensing measurements showed excellent selectivity to acetone vapor at an operating temperature of 350 °C with a high gas response about 150% to 100 ppm. The combination of the possibility of fast acetone vapor detection, low power consumption, and controllable size and geometry makes these 3D-printed devices ideal candidates for fast detection, as well as for acetone vapor monitoring (down to 100 ppm). This 3D-printing approach will pave a new way for many different devices through the simplicity and versatility of the fabrication method for the exact detection of acetone vapors in various atmospheres.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b04385