Characterization of supported liquid extraction as a sample pretreatment method for eicosanoids and related metabolites in biological fluids
Sample pretreatment is an important process in liquid chromatography-mass spectrometry-based quantitative lipidomics. Reversed-phase solid phase extraction (RP-SPE) has been widely used for analyzing various types of samples, including aqueous samples such as cell culture media, plasma, serum, urine...
Gespeichert in:
Veröffentlicht in: | Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2019-08, Vol.1124, p.298-307 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sample pretreatment is an important process in liquid chromatography-mass spectrometry-based quantitative lipidomics. Reversed-phase solid phase extraction (RP-SPE) has been widely used for analyzing various types of samples, including aqueous samples such as cell culture media, plasma, serum, urine, and other biological fluids. Because lipid mediators are often protein-bound, prior deproteinization is necessary for their effective recovery. Deproteinization is typically performed by the addition of organic solvents, which requires time-consuming evaporation–reconstitution, or dilution with aqueous solvents before RP-SPE; however, both of these approaches compromise the analytical performance. As a potential alternative, we attempted to utilize supported liquid extraction (SLE), an automation-compatible variant of liquid-liquid extraction, for the determination of eicosanoids and related metabolites in aqueous samples. We screened 81 different sample diluent–eluent conditions and found that the use of 0.1% formic acid-water as the diluent and 0.1% formic acid-methyl acetate as the eluent enabled the optimum recovery of a variety of eicosanoids, except for peptide leukotrienes. The optimized SLE method efficiently removed protein from human plasma, while phospholipids and neutral lipids were modestly recovered. Moreover, the proposed method exhibited a quantitative performance comparable to that of typical ordinary RP-SPE method in the analysis of human platelets stimulated with thrombin receptor-activating peptide 6. Thus, we propose SLE as an attractive option for rapid lipid mediator extraction from aqueous samples.
•A supported liquid extraction protocol is developed for lipid mediator extraction from aqueous samples.•Various fatty acid derived lipid mediators and platelet-activation factor are extracted by the proposed method.•Peptide leukotrienes were poorly recovered by the proposed method.•The method showed comparable performance with reversed-phase solid phase extraction method in the analysis of human platelet supernatants. |
---|---|
ISSN: | 1570-0232 1873-376X |
DOI: | 10.1016/j.jchromb.2019.06.016 |