Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model

Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2019-10, Vol.81 (10), p.4144-4173
Hauptverfasser: Valle, Paul A., Coria, Luis N., Salazar, Yolocuauhtli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4173
container_issue 10
container_start_page 4144
container_title Bulletin of mathematical biology
container_volume 81
creator Valle, Paul A.
Coria, Luis N.
Salazar, Yolocuauhtli
description Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.
doi_str_mv 10.1007/s11538-019-00636-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2251103299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251103299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-7cf836432c97bbe762a86ab1a6b340b9189a35869c37cf7a66f35f6a1a7f0d8f3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgwoEguLwZfGlxFVXCpasZTZOnEd2iqJi50MfXscWkBiYLLl8_3_kT-ELim5pYTIu0hpzhUmVGNCBBdYHqEhzRnDWhB2jIaEaIYVG5MBOotxQ1JIc32KBpwyMaZcDNHLoqt9yCaVgwCNddl9A9UurmPmmwyySf-WxitXezyt667x7coF2O6yOaRbDe3aQpXN_dJV5-ikhCq6i8M5Qm-PD4vJM569Pk0n9zNsucxbLG2puBhzZrUsCicFAyWgoCAKPiaFpkoDz5XQCbelBCFKnpcCKMiSLFXJR-hm37sN_qNzsTX1OlpXVdA430XDWE4p4UzrhF7_QTe-C-mLPaWVFEowmSi2p2zwMQZXmm1Y1xB2hhLTqzZ71SapNl-qTR-6OlR3Re2WP5FvtwngeyCmUfPuwu_uf2o_AR-Hh_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298768627</pqid></control><display><type>article</type><title>Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model</title><source>SpringerLink Journals</source><creator>Valle, Paul A. ; Coria, Luis N. ; Salazar, Yolocuauhtli</creator><creatorcontrib>Valle, Paul A. ; Coria, Luis N. ; Salazar, Yolocuauhtli</creatorcontrib><description>Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-019-00636-7</identifier><identifier>PMID: 31264136</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cancer ; Cell Biology ; Chemotherapy ; Computer simulation ; Evolution ; Immune clearance ; Immune response ; Immune system ; Immunotherapy ; Invariants ; Liapunov functions ; Life Sciences ; Localization ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Original Article ; Stability ; Tumors ; Upper bounds</subject><ispartof>Bulletin of mathematical biology, 2019-10, Vol.81 (10), p.4144-4173</ispartof><rights>Society for Mathematical Biology 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-7cf836432c97bbe762a86ab1a6b340b9189a35869c37cf7a66f35f6a1a7f0d8f3</citedby><cites>FETCH-LOGICAL-c375t-7cf836432c97bbe762a86ab1a6b340b9189a35869c37cf7a66f35f6a1a7f0d8f3</cites><orcidid>0000-0001-6567-1065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-019-00636-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-019-00636-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31264136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valle, Paul A.</creatorcontrib><creatorcontrib>Coria, Luis N.</creatorcontrib><creatorcontrib>Salazar, Yolocuauhtli</creatorcontrib><title>Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.</description><subject>Cancer</subject><subject>Cell Biology</subject><subject>Chemotherapy</subject><subject>Computer simulation</subject><subject>Evolution</subject><subject>Immune clearance</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunotherapy</subject><subject>Invariants</subject><subject>Liapunov functions</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Stability</subject><subject>Tumors</subject><subject>Upper bounds</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EoqXwAgwoEguLwZfGlxFVXCpasZTZOnEd2iqJi50MfXscWkBiYLLl8_3_kT-ELim5pYTIu0hpzhUmVGNCBBdYHqEhzRnDWhB2jIaEaIYVG5MBOotxQ1JIc32KBpwyMaZcDNHLoqt9yCaVgwCNddl9A9UurmPmmwyySf-WxitXezyt667x7coF2O6yOaRbDe3aQpXN_dJV5-ikhCq6i8M5Qm-PD4vJM569Pk0n9zNsucxbLG2puBhzZrUsCicFAyWgoCAKPiaFpkoDz5XQCbelBCFKnpcCKMiSLFXJR-hm37sN_qNzsTX1OlpXVdA430XDWE4p4UzrhF7_QTe-C-mLPaWVFEowmSi2p2zwMQZXmm1Y1xB2hhLTqzZ71SapNl-qTR-6OlR3Re2WP5FvtwngeyCmUfPuwu_uf2o_AR-Hh_A</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Valle, Paul A.</creator><creator>Coria, Luis N.</creator><creator>Salazar, Yolocuauhtli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6567-1065</orcidid></search><sort><creationdate>20191001</creationdate><title>Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model</title><author>Valle, Paul A. ; Coria, Luis N. ; Salazar, Yolocuauhtli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-7cf836432c97bbe762a86ab1a6b340b9189a35869c37cf7a66f35f6a1a7f0d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>Cell Biology</topic><topic>Chemotherapy</topic><topic>Computer simulation</topic><topic>Evolution</topic><topic>Immune clearance</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunotherapy</topic><topic>Invariants</topic><topic>Liapunov functions</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Stability</topic><topic>Tumors</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valle, Paul A.</creatorcontrib><creatorcontrib>Coria, Luis N.</creatorcontrib><creatorcontrib>Salazar, Yolocuauhtli</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valle, Paul A.</au><au>Coria, Luis N.</au><au>Salazar, Yolocuauhtli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>81</volume><issue>10</issue><spage>4144</spage><epage>4173</epage><pages>4144-4173</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31264136</pmid><doi>10.1007/s11538-019-00636-7</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-6567-1065</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2019-10, Vol.81 (10), p.4144-4173
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_2251103299
source SpringerLink Journals
subjects Cancer
Cell Biology
Chemotherapy
Computer simulation
Evolution
Immune clearance
Immune response
Immune system
Immunotherapy
Invariants
Liapunov functions
Life Sciences
Localization
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Original Article
Stability
Tumors
Upper bounds
title Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%20Clearance%20Analysis%20on%20a%20Cancer%20Chemo-Immunotherapy%20Mathematical%20Model&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Valle,%20Paul%20A.&rft.date=2019-10-01&rft.volume=81&rft.issue=10&rft.spage=4144&rft.epage=4173&rft.pages=4144-4173&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-019-00636-7&rft_dat=%3Cproquest_cross%3E2251103299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298768627&rft_id=info:pmid/31264136&rfr_iscdi=true