Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model
Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance probl...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2019-10, Vol.81 (10), p.4144-4173 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4173 |
---|---|
container_issue | 10 |
container_start_page | 4144 |
container_title | Bulletin of mathematical biology |
container_volume | 81 |
creator | Valle, Paul A. Coria, Luis N. Salazar, Yolocuauhtli |
description | Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work. |
doi_str_mv | 10.1007/s11538-019-00636-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2251103299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251103299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-7cf836432c97bbe762a86ab1a6b340b9189a35869c37cf7a66f35f6a1a7f0d8f3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgwoEguLwZfGlxFVXCpasZTZOnEd2iqJi50MfXscWkBiYLLl8_3_kT-ELim5pYTIu0hpzhUmVGNCBBdYHqEhzRnDWhB2jIaEaIYVG5MBOotxQ1JIc32KBpwyMaZcDNHLoqt9yCaVgwCNddl9A9UurmPmmwyySf-WxitXezyt667x7coF2O6yOaRbDe3aQpXN_dJV5-ikhCq6i8M5Qm-PD4vJM569Pk0n9zNsucxbLG2puBhzZrUsCicFAyWgoCAKPiaFpkoDz5XQCbelBCFKnpcCKMiSLFXJR-hm37sN_qNzsTX1OlpXVdA430XDWE4p4UzrhF7_QTe-C-mLPaWVFEowmSi2p2zwMQZXmm1Y1xB2hhLTqzZ71SapNl-qTR-6OlR3Re2WP5FvtwngeyCmUfPuwu_uf2o_AR-Hh_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298768627</pqid></control><display><type>article</type><title>Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model</title><source>SpringerLink Journals</source><creator>Valle, Paul A. ; Coria, Luis N. ; Salazar, Yolocuauhtli</creator><creatorcontrib>Valle, Paul A. ; Coria, Luis N. ; Salazar, Yolocuauhtli</creatorcontrib><description>Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-019-00636-7</identifier><identifier>PMID: 31264136</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cancer ; Cell Biology ; Chemotherapy ; Computer simulation ; Evolution ; Immune clearance ; Immune response ; Immune system ; Immunotherapy ; Invariants ; Liapunov functions ; Life Sciences ; Localization ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Original Article ; Stability ; Tumors ; Upper bounds</subject><ispartof>Bulletin of mathematical biology, 2019-10, Vol.81 (10), p.4144-4173</ispartof><rights>Society for Mathematical Biology 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-7cf836432c97bbe762a86ab1a6b340b9189a35869c37cf7a66f35f6a1a7f0d8f3</citedby><cites>FETCH-LOGICAL-c375t-7cf836432c97bbe762a86ab1a6b340b9189a35869c37cf7a66f35f6a1a7f0d8f3</cites><orcidid>0000-0001-6567-1065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-019-00636-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-019-00636-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31264136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valle, Paul A.</creatorcontrib><creatorcontrib>Coria, Luis N.</creatorcontrib><creatorcontrib>Salazar, Yolocuauhtli</creatorcontrib><title>Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.</description><subject>Cancer</subject><subject>Cell Biology</subject><subject>Chemotherapy</subject><subject>Computer simulation</subject><subject>Evolution</subject><subject>Immune clearance</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunotherapy</subject><subject>Invariants</subject><subject>Liapunov functions</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Stability</subject><subject>Tumors</subject><subject>Upper bounds</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EoqXwAgwoEguLwZfGlxFVXCpasZTZOnEd2iqJi50MfXscWkBiYLLl8_3_kT-ELim5pYTIu0hpzhUmVGNCBBdYHqEhzRnDWhB2jIaEaIYVG5MBOotxQ1JIc32KBpwyMaZcDNHLoqt9yCaVgwCNddl9A9UurmPmmwyySf-WxitXezyt667x7coF2O6yOaRbDe3aQpXN_dJV5-ikhCq6i8M5Qm-PD4vJM569Pk0n9zNsucxbLG2puBhzZrUsCicFAyWgoCAKPiaFpkoDz5XQCbelBCFKnpcCKMiSLFXJR-hm37sN_qNzsTX1OlpXVdA430XDWE4p4UzrhF7_QTe-C-mLPaWVFEowmSi2p2zwMQZXmm1Y1xB2hhLTqzZ71SapNl-qTR-6OlR3Re2WP5FvtwngeyCmUfPuwu_uf2o_AR-Hh_A</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Valle, Paul A.</creator><creator>Coria, Luis N.</creator><creator>Salazar, Yolocuauhtli</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6567-1065</orcidid></search><sort><creationdate>20191001</creationdate><title>Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model</title><author>Valle, Paul A. ; Coria, Luis N. ; Salazar, Yolocuauhtli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-7cf836432c97bbe762a86ab1a6b340b9189a35869c37cf7a66f35f6a1a7f0d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>Cell Biology</topic><topic>Chemotherapy</topic><topic>Computer simulation</topic><topic>Evolution</topic><topic>Immune clearance</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunotherapy</topic><topic>Invariants</topic><topic>Liapunov functions</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Stability</topic><topic>Tumors</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valle, Paul A.</creatorcontrib><creatorcontrib>Coria, Luis N.</creatorcontrib><creatorcontrib>Salazar, Yolocuauhtli</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valle, Paul A.</au><au>Coria, Luis N.</au><au>Salazar, Yolocuauhtli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>81</volume><issue>10</issue><spage>4144</spage><epage>4173</epage><pages>4144-4173</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31264136</pmid><doi>10.1007/s11538-019-00636-7</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-6567-1065</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2019-10, Vol.81 (10), p.4144-4173 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_2251103299 |
source | SpringerLink Journals |
subjects | Cancer Cell Biology Chemotherapy Computer simulation Evolution Immune clearance Immune response Immune system Immunotherapy Invariants Liapunov functions Life Sciences Localization Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Original Article Stability Tumors Upper bounds |
title | Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%20Clearance%20Analysis%20on%20a%20Cancer%20Chemo-Immunotherapy%20Mathematical%20Model&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Valle,%20Paul%20A.&rft.date=2019-10-01&rft.volume=81&rft.issue=10&rft.spage=4144&rft.epage=4173&rft.pages=4144-4173&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-019-00636-7&rft_dat=%3Cproquest_cross%3E2251103299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298768627&rft_id=info:pmid/31264136&rfr_iscdi=true |