Tumor Clearance Analysis on a Cancer Chemo-Immunotherapy Mathematical Model

Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2019-10, Vol.81 (10), p.4144-4173
Hauptverfasser: Valle, Paul A., Coria, Luis N., Salazar, Yolocuauhtli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mathematical models may allow us to improve our knowledge on tumor evolution and to better comprehend the dynamics between cancer, the immune system and the application of treatments such as chemotherapy and immunotherapy in both short and long term. In this paper, we solve the tumor clearance problem for a six-dimensional mathematical model that describes tumor evolution under immune response and chemo-immunotherapy treatments. First, by means of the localization of compact invariant sets method, we determine lower and upper bounds for all cells populations considered by the model and we use these results to establish sufficient conditions for the existence of a bounded positively invariant domain in the nonnegative orthant by applying LaSalle’s invariance principle. Then, by exploiting a candidate Lyapunov function we determine sufficient conditions on the chemotherapy treatment to ensure tumor clearance. Further, we investigate the local stability of the tumor-free equilibrium point and compute conditions for asymptotic stability and tumor persistence. All conditions are given by inequalities in terms of the system parameters, and we perform numerical simulations with different values on the chemotherapy treatment to illustrate our results. Finally, we discuss the biological implications of our work.
ISSN:0092-8240
1522-9602
DOI:10.1007/s11538-019-00636-7