Blend of cellulose ester and enteric polymers for delayed and enteric coating of core tablets of hydrophilic and hydrophobic drugs

[Display omitted] The focus of this work was to explore feasibility of using blends of cellulose esters (CA 320S, CA 3980-10 or CAB 171-15) and enteric polymers (C-A-P, Eudragit® L100 or HPMCP HP-55) for delayed and enteric coating of tablets containing either diclofenac sodium (DFS, high dose) or p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2019-08, Vol.567, p.118462-118462, Article 118462
Hauptverfasser: Ali, Sogra F. Barakh, Afrooz, Hamideh, Hampel, Rachel, Mohamed, Eman M., Bhattacharya, Raktima, Cook, Phillip, Khan, Mansoor A., Rahman, Ziyaur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The focus of this work was to explore feasibility of using blends of cellulose esters (CA 320S, CA 3980-10 or CAB 171-15) and enteric polymers (C-A-P, Eudragit® L100 or HPMCP HP-55) for delayed and enteric coating of tablets containing either diclofenac sodium (DFS, high dose) or prednisone (PDS, low dose) drug. The core tablets of DFS or PDS were coated with polymer blends to achieve approximate weight gain of 5% and 10%. The coated tablets were characterized for dissolution (0.1 N HCl and phosphate buffer pH 6.8) and surface morphology. The surface morphology of CA 398-10 or CAB 171-15 based polymer blends was rough and fibrous. Less than 0.5% drug was dissolved in 120 min from 5% w/w coated tablets in acid-phase dissolution testing. The dissolution in phosphate buffer pH 6.8 medium varied from 16.2 ± 0.2 to 98 ± 2.1%, and 30.1 ± 0.5% to 101.7 ± 3.4% in 120 min from DFS and PDS coated tablets, respectively. Dissolution was less in CA 320S based blends compared to CA 398-10 or CAB 171-15 blends in phosphate buffer medium. Furthermore, there were no significant differences observed in dissolution profiles of coated tablets of DFS or PDS. This can be explained by dose of the drugs. Additionally, dissolution was higher in tablets coated with enteric polymer alone compared with the blends. In conclusion, core tablets can be coated with cellulose ester and enteric polymers blend to impart both delayed and enteric release feature to the tablets containing hydrophilic or hydrophobic drug.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2019.118462