Revisiting cell–particle association in vitro: A quantitative method to compare particle performance

Nanoengineering has the potential to revolutionize medicine by designing drug delivery systems that are both efficacious and highly selective. Determination of the affinity between cell lines and nanoparticles is thus of central importance, both to enable comparison of particles and to facilitate pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2019-08, Vol.307, p.355-367
Hauptverfasser: Faria, Matthew, Noi, Ka Fung, Dai, Qiong, Björnmalm, Mattias, Johnston, Stuart T., Kempe, Kristian, Caruso, Frank, Crampin, Edmund J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoengineering has the potential to revolutionize medicine by designing drug delivery systems that are both efficacious and highly selective. Determination of the affinity between cell lines and nanoparticles is thus of central importance, both to enable comparison of particles and to facilitate prediction of in vivo response. Attempts to compare particle performance can be dominated by experimental artifacts (including settling effects) or variability in experimental protocol. Instead, qualitative methods are generally used, limiting the reusability of many studies. Herein, we introduce a mathematical model-based approach to quantify the affinity between a cell–particle pairing, independent of the aforementioned confounding artifacts. The analysis presented can serve as a quantitative metric of the stealth, fouling, and targeting performance of nanoengineered particles in vitro. We validate this approach using a newly created in vitro dataset, consisting of seven different disulfide-stabilized poly(methacrylic acid) particles ranging from ~100 to 1000 nm in diameter that were incubated with three different cell lines (HeLa, THP-1, and RAW 264.7). We further expanded this dataset through the inclusion of previously published data and use it to determine which of five mathematical models best describe cell–particle association. We subsequently use this model to perform a quantitative comparison of cell–particle association for cell–particle pairings in our dataset. This analysis reveals a more complex cell–particle association relationship than a simplistic interpretation of the data, which erroneously assigns high affinity for all cell lines examined to large particles. Finally, we provide an online tool (http://bionano.xyz/estimator), which allows other researchers to easily apply this modeling approach to their experimental results. [Display omitted] •Comparison of cell–particle incubation experiments is challenging.•Reasons are differences in particle properties, cells, and experimental protocol.•Mathematical modeling can account for these differences.•This approach enables quantitative comparison of particle performance in vitro.•This technique can be applied to new data using http://bionano.xyz/estimator
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2019.06.027