MiRNA-19a-3p alleviates the progression of osteoporosis by targeting HDAC4 to promote the osteogenic differentiation of hMSCs

To clarify the function of microRNA-19a-3p (miRNA-19a-3p) in the osteogenic differentiation of human-derived mesenchymal stem cells (hMSCs) and the potential mechanism. Serum levels of miRNA-19a-3p, RUNX2 and OCN in osteoporosis patients and controls were determined by quantitative real-time polymer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2019-08, Vol.516 (3), p.666-672
Hauptverfasser: Chen, Rijiang, Qiu, Hanmin, Tong, Yan, Liao, Fake, Hu, Xiunian, Qiu, Yongrong, Liao, Yuanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To clarify the function of microRNA-19a-3p (miRNA-19a-3p) in the osteogenic differentiation of human-derived mesenchymal stem cells (hMSCs) and the potential mechanism. Serum levels of miRNA-19a-3p, RUNX2 and OCN in osteoporosis patients and controls were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Alkaline phosphatase (ALP) content and calcification ability during the process of osteogenic differentiation were examined by ALP staining and alizarin red staining, respectively. After altering miRNA-19a-3p level by transfection of miRNA-19a-3p mimic or inhibitor, we detected relative levels of miRNA-19a-3p, RUNX2 and OCN in hMSCs by qRT-PCR. The binding relationship between miRNA-19a-3p and HDAC4 was predicted by TargetScan and further verified by dual-luciferase reporter gene assay. Relative expression of HDAC4 was detected by Western blot and qRT-PCR in hMSCs transfected with miRNA-19a-3p mimic or inhibitor. Regulatory effects of miRNA-19a-3p/HDAC4 axis on osteogenic differentiation of hMSCs were evaluated. MiRNA-19a-3p was downregulated in osteoporosis patients. Its level gradually increased in hMSCs with the prolongation of osteogenic differentiation. Overexpression of miRNA-19a-3p upregulated levels of RUNX2 and OCN, and enhanced ALP activity. Knockdown of miRNA-19a-3p obtained the opposite trends. Dual-luciferase reporter gene assay verified that miRNA-19a-3p could target to 3′UTR of HDAC4. Protein level of HDAC4 was negatively regulated by miRNA-19a-3p in hMSCs. More importantly, co-overexpression of miRNA-19a-3p and HDAC4 could reverse the regulatory effects of miRNA-19a-3p on enhancing ALP activity and upregulating RUNX2 and OCN. MiRNA-19a-3p promotes the osteogenic differentiation of hMSCs by inhibiting HDAC4 expression, thus alleviating the progression of osteoporosis. •We first confirmed that MiRNA-19a-3p promotes the osteogenic differentiation of human-derived mesenchymal stem cells (hMSCs) by inhibiting HDAC4 expression, thus alleviating the progression of osteoporosis.•We further clarified that miRNA-19a-3p could target to 3′UTR of HDAC4. Protein level of HDAC4 was negatively regulated by miRNA-19a-3p in hMSCs.•Co-overexpression of miRNA-19a-3p and HDAC4 could reverse the regulatory effects of miRNA-19a-3p on enhancing ALP activity and upregulating RUNX2 and OCN.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2019.06.083