Tributyltin Affects Retinoid X Receptor-Mediated Lipid Metabolism in the Marine Rotifer Brachionus koreanus

To examine how tributyltin (TBT), a model obesogen, affects the lipid metabolism in the marine rotifer Brachionus koreanus, we carried out life-cycle studies and determined the in vitro and in silico interactions of retinoid X receptor (RXR) with TBT, the transcriptional levels of RXR and lipid meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2019-07, Vol.53 (13), p.7830-7839
Hauptverfasser: Lee, Min-Chul, Fonseca, Elza, Park, Jun Chul, Yoon, Deok-Seo, Choi, Hyuntae, Kim, Moonkoo, Han, Jeonghoon, Cho, Hyeon-Seo, Shin, Kyung-Hoon, Santos, Miguel L, Jung, Jee-Hyun, Castro, L. Filipe C, Lee, Jae-Seong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To examine how tributyltin (TBT), a model obesogen, affects the lipid metabolism in the marine rotifer Brachionus koreanus, we carried out life-cycle studies and determined the in vitro and in silico interactions of retinoid X receptor (RXR) with TBT, the transcriptional levels of RXR and lipid metabolic genes, and the fatty acid content. The lethal concentration 10% (LC10) was determined to be 5.12 μg/L TBT, and negative effects on ecologically relevant end points (e.g., decreased lifespan and fecundity) were detected at 5 μg/L TBT. On the basis of these findings, subsequent experiments were conducted below 1 μg/L TBT, which did not show any negative effects on ecologically relevant end points in B. koreanus. Nile red staining analysis showed that after exposure to 1 μg/L TBT, B. koreanus stored neutral lipids and had significantly increased transcriptional levels of RXR and lipid metabolism-related genes compared to the control. However, the content of total fatty acids did not significantly change at any exposure level. In the single fatty acids profile, a significant increase in saturated fatty acids (SFAs) 14:0 and 20:0 was observed, but the contents of omega-3 and omega-6 fatty acids were significantly decreased. Also, a transactivation assay of TBT with RXR showed that TBT is an agonist of Bk-RXR with a similar fold-induction to the positive control. Taken together, these results demonstrate that TBT-modulated RXR signaling leads to increase in transcriptional levels of lipid metabolism-related genes and the synthesis of SFAs but decreases the content of polyunsaturated fatty acids (PUFAs). Our findings support a wider taxonomic scope of lipid perturbation due to xenobiotic exposure that occurs via NRs in aquatic animals.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.9b01359