Tributyltin Affects Retinoid X Receptor-Mediated Lipid Metabolism in the Marine Rotifer Brachionus koreanus
To examine how tributyltin (TBT), a model obesogen, affects the lipid metabolism in the marine rotifer Brachionus koreanus, we carried out life-cycle studies and determined the in vitro and in silico interactions of retinoid X receptor (RXR) with TBT, the transcriptional levels of RXR and lipid meta...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2019-07, Vol.53 (13), p.7830-7839 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To examine how tributyltin (TBT), a model obesogen, affects the lipid metabolism in the marine rotifer Brachionus koreanus, we carried out life-cycle studies and determined the in vitro and in silico interactions of retinoid X receptor (RXR) with TBT, the transcriptional levels of RXR and lipid metabolic genes, and the fatty acid content. The lethal concentration 10% (LC10) was determined to be 5.12 μg/L TBT, and negative effects on ecologically relevant end points (e.g., decreased lifespan and fecundity) were detected at 5 μg/L TBT. On the basis of these findings, subsequent experiments were conducted below 1 μg/L TBT, which did not show any negative effects on ecologically relevant end points in B. koreanus. Nile red staining analysis showed that after exposure to 1 μg/L TBT, B. koreanus stored neutral lipids and had significantly increased transcriptional levels of RXR and lipid metabolism-related genes compared to the control. However, the content of total fatty acids did not significantly change at any exposure level. In the single fatty acids profile, a significant increase in saturated fatty acids (SFAs) 14:0 and 20:0 was observed, but the contents of omega-3 and omega-6 fatty acids were significantly decreased. Also, a transactivation assay of TBT with RXR showed that TBT is an agonist of Bk-RXR with a similar fold-induction to the positive control. Taken together, these results demonstrate that TBT-modulated RXR signaling leads to increase in transcriptional levels of lipid metabolism-related genes and the synthesis of SFAs but decreases the content of polyunsaturated fatty acids (PUFAs). Our findings support a wider taxonomic scope of lipid perturbation due to xenobiotic exposure that occurs via NRs in aquatic animals. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.9b01359 |