Hollow-Carbon-Templated Few-Layered V5S8 Nanosheets Enabling Ultrafast Potassium Storage and Long-Term Cycling

Due to the abundant potassium resource on the Earth’s crust, researchers now have become interested in exploring high-performance potassium-ion batteries (KIBs). However, the large size of K+ would hinder the diffusion of K ions into electrode materials, thus leading to poor energy/power density and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-07, Vol.13 (7), p.7939-7948
Hauptverfasser: Li, Li, Zhang, Wenchao, Wang, Xing, Zhang, Shilin, Liu, Yajie, Li, Minhan, Zhu, Guanjia, Zheng, Yang, Zhang, Qing, Zhou, Tengfei, Pang, Wei Kong, Luo, Wei, Guo, Zaiping, Yang, Jianping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the abundant potassium resource on the Earth’s crust, researchers now have become interested in exploring high-performance potassium-ion batteries (KIBs). However, the large size of K+ would hinder the diffusion of K ions into electrode materials, thus leading to poor energy/power density and cycling performance during the depotassiation/potassiation process. So, few-layered V5S8 nanosheets wrapping a hollow carbon sphere fabricated via a facile hollow carbon template induced method could reversibly accommodate K storage and maintain the structure stability. Hence, the as-obtained V5S8@C electrode enables rapid and reversible storage of K+ with a high specific capacity of 645 mAh/g at 50 mA/g, a high rate capability, and long cycling stability, with 360 and 190 mAh/g achieved after 500 and 1000 cycles at 500 and 2000 mA/g, respectively. The excellent electrochemical performance is superior to the most existing electrode materials. The DFT calculations reveal that V5S8 nanosheets have high electrical conductivity and low energy barriers for K+ intercalation. Furthermore, the reaction mechanism of the V5S8@C electrode in KIBs is probed via the in operando synchrotron X-ray diffraction technique, and it indicates that the V5S8@C electrode undergoes a sequential intercalation (KV5S8) and conversion reactions (K2S3) reversibly during the potassiation process.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.9b02384