Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts

Noninvasive brain-computer interfaces (BCI) for movement control via an electroencephalogram (EEG) have been extensively investigated. However, most previous studies decoded user intention for movement directions based on sensorimotor rhythms during motor imagery. BCI systems based on mapping imager...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2019-07, Vol.110, p.254-264
Hauptverfasser: Kim, Hoon-Hee, Jeong, Jaeseung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 254
container_title Computers in biology and medicine
container_volume 110
creator Kim, Hoon-Hee
Jeong, Jaeseung
description Noninvasive brain-computer interfaces (BCI) for movement control via an electroencephalogram (EEG) have been extensively investigated. However, most previous studies decoded user intention for movement directions based on sensorimotor rhythms during motor imagery. BCI systems based on mapping imagery movement of body parts (e.g., left or right hands) to movement directions (left or right directional movement of a machine or cursor) are less intuitive and less convenient due to the complex training procedures. Thus, direct decoding methods for detecting user intention about movement directions are urgently needed. Here, we describe a novel direct decoding method for user intention about the movement directions using the echo state network and Gaussian readouts. Importantly parameters in the network were optimized using the genetic algorithm method to achieve better decoding performance. We tested the decoding performance of this method with four healthy subjects and an inexpensive wireless EEG system containing 14 channels and then compared the performance outcome with that of a conventional machine learning method. We showed that this decoding method successfully classified eight directions of intended movement (approximately 95% of an accuracy). We suggest that the echo state network and Gaussian readouts can be a useful decoding method to directly read user intention of movement directions even using an inexpensive and portable EEG system. •The echo state network and Gaussian readouts decode user intention of movement directions using the electroencephalography.•Intended movement directions can be directly decoded without motor imagery of body movement.•Echo state network can successfully read user intention of movement direction even using low-cost EEG systems.•Genetic algorithms are useful for optimizing the parameters of echo state network decoders.
doi_str_mv 10.1016/j.compbiomed.2019.05.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2246906255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482519301921</els_id><sourcerecordid>2251020067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-460a68d2a71f25f0702913a9aaf3c6d800e173ca83fa600a5d7f3ccae09f7b943</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERbeFv4AsceGSMLbzeYQCBalSL-VszdqTXS9ZO9gJFUf-OQ7bColLL7bkeeYdax7GuIBSgGjeHUoTjtPWhSPZUoLoS6hLkNUzthFd2xdQq-o52wAIKKpO1ufsIqUDAFSg4AU7V0Iq1bdiw35_JBOs8ztOI5k5BvKGpj2OYRdx2jvDk9t5HBMfQuTWxQy54LnzfBvR-WL9yDJTzC_5HNAQX9LfPLMPPM04E_c034f4naO3_BqXlBx6HgltWOb0kp0NOZ9ePdyX7NvnT3dXX4qb2-uvV-9vClOBnIuqAWw6K7EVg6wHaEH2QmGPOCjT2A6ARKsMdmrABgBr2-aCQYJ-aLd9pS7Z21PuFMOPhdKsjy4ZGkf0FJakpayaHhpZ1xl98x96CEtct5CpWoAEaNpMdSfKxJBSpEFP0R0x_tIC9KpJH_Q_TXrVpKHWWVNuff0wYNmutcfGRy8Z-HACKG_kp6Ook3GrmpMBbYN7esofgASrQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251020067</pqid></control><display><type>article</type><title>Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts</title><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Kim, Hoon-Hee ; Jeong, Jaeseung</creator><creatorcontrib>Kim, Hoon-Hee ; Jeong, Jaeseung</creatorcontrib><description>Noninvasive brain-computer interfaces (BCI) for movement control via an electroencephalogram (EEG) have been extensively investigated. However, most previous studies decoded user intention for movement directions based on sensorimotor rhythms during motor imagery. BCI systems based on mapping imagery movement of body parts (e.g., left or right hands) to movement directions (left or right directional movement of a machine or cursor) are less intuitive and less convenient due to the complex training procedures. Thus, direct decoding methods for detecting user intention about movement directions are urgently needed. Here, we describe a novel direct decoding method for user intention about the movement directions using the echo state network and Gaussian readouts. Importantly parameters in the network were optimized using the genetic algorithm method to achieve better decoding performance. We tested the decoding performance of this method with four healthy subjects and an inexpensive wireless EEG system containing 14 channels and then compared the performance outcome with that of a conventional machine learning method. We showed that this decoding method successfully classified eight directions of intended movement (approximately 95% of an accuracy). We suggest that the echo state network and Gaussian readouts can be a useful decoding method to directly read user intention of movement directions even using an inexpensive and portable EEG system. •The echo state network and Gaussian readouts decode user intention of movement directions using the electroencephalography.•Intended movement directions can be directly decoded without motor imagery of body movement.•Echo state network can successfully read user intention of movement direction even using low-cost EEG systems.•Genetic algorithms are useful for optimizing the parameters of echo state network decoders.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2019.05.024</identifier><identifier>PMID: 31233971</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Body parts ; Brain ; Brain research ; Brain-computer interface ; Classification ; Computer applications ; Decoding ; Decoding movement direction ; Echo state network ; EEG ; Electrodes ; Electroencephalography ; Gaussian readout ; Gene mapping ; Genetic algorithms ; Human-computer interface ; Imagery ; Implants ; Interfaces ; Learning algorithms ; Machine learning ; Mapping ; Medical imaging ; Mental task performance ; Motion perception ; Robotics ; Sensorimotor system</subject><ispartof>Computers in biology and medicine, 2019-07, Vol.110, p.254-264</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>2019. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-460a68d2a71f25f0702913a9aaf3c6d800e173ca83fa600a5d7f3ccae09f7b943</citedby><cites>FETCH-LOGICAL-c402t-460a68d2a71f25f0702913a9aaf3c6d800e173ca83fa600a5d7f3ccae09f7b943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2251020067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31233971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hoon-Hee</creatorcontrib><creatorcontrib>Jeong, Jaeseung</creatorcontrib><title>Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Noninvasive brain-computer interfaces (BCI) for movement control via an electroencephalogram (EEG) have been extensively investigated. However, most previous studies decoded user intention for movement directions based on sensorimotor rhythms during motor imagery. BCI systems based on mapping imagery movement of body parts (e.g., left or right hands) to movement directions (left or right directional movement of a machine or cursor) are less intuitive and less convenient due to the complex training procedures. Thus, direct decoding methods for detecting user intention about movement directions are urgently needed. Here, we describe a novel direct decoding method for user intention about the movement directions using the echo state network and Gaussian readouts. Importantly parameters in the network were optimized using the genetic algorithm method to achieve better decoding performance. We tested the decoding performance of this method with four healthy subjects and an inexpensive wireless EEG system containing 14 channels and then compared the performance outcome with that of a conventional machine learning method. We showed that this decoding method successfully classified eight directions of intended movement (approximately 95% of an accuracy). We suggest that the echo state network and Gaussian readouts can be a useful decoding method to directly read user intention of movement directions even using an inexpensive and portable EEG system. •The echo state network and Gaussian readouts decode user intention of movement directions using the electroencephalography.•Intended movement directions can be directly decoded without motor imagery of body movement.•Echo state network can successfully read user intention of movement direction even using low-cost EEG systems.•Genetic algorithms are useful for optimizing the parameters of echo state network decoders.</description><subject>Body parts</subject><subject>Brain</subject><subject>Brain research</subject><subject>Brain-computer interface</subject><subject>Classification</subject><subject>Computer applications</subject><subject>Decoding</subject><subject>Decoding movement direction</subject><subject>Echo state network</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Gaussian readout</subject><subject>Gene mapping</subject><subject>Genetic algorithms</subject><subject>Human-computer interface</subject><subject>Imagery</subject><subject>Implants</subject><subject>Interfaces</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>Mental task performance</subject><subject>Motion perception</subject><subject>Robotics</subject><subject>Sensorimotor system</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhi1ERbeFv4AsceGSMLbzeYQCBalSL-VszdqTXS9ZO9gJFUf-OQ7bColLL7bkeeYdax7GuIBSgGjeHUoTjtPWhSPZUoLoS6hLkNUzthFd2xdQq-o52wAIKKpO1ufsIqUDAFSg4AU7V0Iq1bdiw35_JBOs8ztOI5k5BvKGpj2OYRdx2jvDk9t5HBMfQuTWxQy54LnzfBvR-WL9yDJTzC_5HNAQX9LfPLMPPM04E_c034f4naO3_BqXlBx6HgltWOb0kp0NOZ9ePdyX7NvnT3dXX4qb2-uvV-9vClOBnIuqAWw6K7EVg6wHaEH2QmGPOCjT2A6ARKsMdmrABgBr2-aCQYJ-aLd9pS7Z21PuFMOPhdKsjy4ZGkf0FJakpayaHhpZ1xl98x96CEtct5CpWoAEaNpMdSfKxJBSpEFP0R0x_tIC9KpJH_Q_TXrVpKHWWVNuff0wYNmutcfGRy8Z-HACKG_kp6Ook3GrmpMBbYN7esofgASrQA</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Kim, Hoon-Hee</creator><creator>Jeong, Jaeseung</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>201907</creationdate><title>Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts</title><author>Kim, Hoon-Hee ; Jeong, Jaeseung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-460a68d2a71f25f0702913a9aaf3c6d800e173ca83fa600a5d7f3ccae09f7b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Body parts</topic><topic>Brain</topic><topic>Brain research</topic><topic>Brain-computer interface</topic><topic>Classification</topic><topic>Computer applications</topic><topic>Decoding</topic><topic>Decoding movement direction</topic><topic>Echo state network</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Gaussian readout</topic><topic>Gene mapping</topic><topic>Genetic algorithms</topic><topic>Human-computer interface</topic><topic>Imagery</topic><topic>Implants</topic><topic>Interfaces</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>Mental task performance</topic><topic>Motion perception</topic><topic>Robotics</topic><topic>Sensorimotor system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hoon-Hee</creatorcontrib><creatorcontrib>Jeong, Jaeseung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hoon-Hee</au><au>Jeong, Jaeseung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2019-07</date><risdate>2019</risdate><volume>110</volume><spage>254</spage><epage>264</epage><pages>254-264</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Noninvasive brain-computer interfaces (BCI) for movement control via an electroencephalogram (EEG) have been extensively investigated. However, most previous studies decoded user intention for movement directions based on sensorimotor rhythms during motor imagery. BCI systems based on mapping imagery movement of body parts (e.g., left or right hands) to movement directions (left or right directional movement of a machine or cursor) are less intuitive and less convenient due to the complex training procedures. Thus, direct decoding methods for detecting user intention about movement directions are urgently needed. Here, we describe a novel direct decoding method for user intention about the movement directions using the echo state network and Gaussian readouts. Importantly parameters in the network were optimized using the genetic algorithm method to achieve better decoding performance. We tested the decoding performance of this method with four healthy subjects and an inexpensive wireless EEG system containing 14 channels and then compared the performance outcome with that of a conventional machine learning method. We showed that this decoding method successfully classified eight directions of intended movement (approximately 95% of an accuracy). We suggest that the echo state network and Gaussian readouts can be a useful decoding method to directly read user intention of movement directions even using an inexpensive and portable EEG system. •The echo state network and Gaussian readouts decode user intention of movement directions using the electroencephalography.•Intended movement directions can be directly decoded without motor imagery of body movement.•Echo state network can successfully read user intention of movement direction even using low-cost EEG systems.•Genetic algorithms are useful for optimizing the parameters of echo state network decoders.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31233971</pmid><doi>10.1016/j.compbiomed.2019.05.024</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2019-07, Vol.110, p.254-264
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2246906255
source Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Body parts
Brain
Brain research
Brain-computer interface
Classification
Computer applications
Decoding
Decoding movement direction
Echo state network
EEG
Electrodes
Electroencephalography
Gaussian readout
Gene mapping
Genetic algorithms
Human-computer interface
Imagery
Implants
Interfaces
Learning algorithms
Machine learning
Mapping
Medical imaging
Mental task performance
Motion perception
Robotics
Sensorimotor system
title Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20electroencephalographic%20signals%20for%20direction%20in%20brain-computer%20interface%20using%20echo%20state%20network%20and%20Gaussian%20readouts&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Kim,%20Hoon-Hee&rft.date=2019-07&rft.volume=110&rft.spage=254&rft.epage=264&rft.pages=254-264&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2019.05.024&rft_dat=%3Cproquest_cross%3E2251020067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251020067&rft_id=info:pmid/31233971&rft_els_id=S0010482519301921&rfr_iscdi=true