Expression, purification and characterization of diguanylate cyclase from Rhodococcus ruber
Diguanylate cyclases (DGCs) were responsible for the synthesis of second messenger cyclic di-guanosine monophosphate (c-di-GMP), which were involved in various physiological activities of bacterial species. Here, a full-length DGC from Rhodococcus ruber SD3 fused with glutathione-S-transferase (GST)...
Gespeichert in:
Veröffentlicht in: | Protein expression and purification 2019-11, Vol.163, p.105441-105441, Article 105441 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diguanylate cyclases (DGCs) were responsible for the synthesis of second messenger cyclic di-guanosine monophosphate (c-di-GMP), which were involved in various physiological activities of bacterial species. Here, a full-length DGC from Rhodococcus ruber SD3 fused with glutathione-S-transferase (GST) was expressed in E. coli and purified by glutathione agarose resin. The apparent molecular mass of one subunit of the purified diguanylate cyclase with GST tag (GST-DGC) was estimated to be 71.9 kDa by SDS-PAGE, which was approximately in accordance with the theoretical value of 73.0 kDa. The sequence of GST-DGC was confirmed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The blue native PAGE indicated that GST-DGC formed octamer. The optimum pH and temperature for GST-DGC activity were 8.0 and 47 °C, respectively. The fusion protein exhibited high thermostability, and 94% of activity was retained when the protein was incubated at 87 °C for 1 h. Moreover, the fusion protein showed pH stability. The Km, Vmax and Kcat values for GST-DGC enzyme were 9.8 μM, 0.7 μM/min and 1.3 S-1. Some ions such as Zn2+, Mn2+, Fe2+, Ni2+ and Co2+ had inhibitory effects on the activity of the protein, while other ions such as Mg2+, K+ and Na+ slightly activated the protein. The fusion protein also showed rather high stability in the presence of toluene, cyclohexane and n-hexane.
•A novel full-length DGC from R. ruber SD3 fused with GST tag.•The new biochemical features of the fusion protein. |
---|---|
ISSN: | 1046-5928 1096-0279 |
DOI: | 10.1016/j.pep.2019.06.001 |