Hydrated excess protons and their local hydrogen bond transport network as measured by translational, librational, and vibrational frequencies

A clear molecular description of excess hydrated protons and their local hydrogen bond transport network remains elusive. Here, the hydrogen bond network of excess hydrated protons in water bridges was probed by measuring their Raman spectra and comparing them to the spectra of protons in ice and wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-06, Vol.150 (23), p.234501-234501
Hauptverfasser: Teschke, Omar, de Castro, Jose Roberto, Gomes, Wyllerson Evaristo, Soares, David Mendez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A clear molecular description of excess hydrated protons and their local hydrogen bond transport network remains elusive. Here, the hydrogen bond network of excess hydrated protons in water bridges was probed by measuring their Raman spectra and comparing them to the spectra of protons in ice and water. The proton vibrational spectrum and the hydrogen bond network translational and librational spectra were recorded. The spectra of the water bridge and water exhibit clear differences, indicating the presence of a structure in water bridges when subjected to an electric field of ∼106 V/m that has not been previously reported. The intermolecular Raman spectrum of the floating water bridge exhibits a hydrogen bond stretching band at 150–250 cm−1, librational bands within the 300–1000 cm−1 spectral range, and a large band at 1500–3000 cm−1, which corresponds to the vibrational signature of excess hydrated protons in the water bridge structure. The excess protons are shown to move predominantly at the air/water interface, and the effect of this distribution is a measurable change in the air/water interfacial tension from ∼80 to ∼32 N/m. Therefore, hydrated protons must have a unique water arrangement that enables them to propagate without sinking into bulk water. This local polarized hydrogen bond network in the interfacial water region is characterized by a translational spectrum similar to that of ice V.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5098314