Risperidone administered during adolescence induced metabolic, anatomical and inflammatory/oxidative changes in adult brain: A PET and MRI study in the maternal immune stimulation animal model

•Risperidone at adolescence prevents schizophrenia-related anomalies in a rat model.•Risperidone prevents brain volumetric abnormalities in ventricles and pituitary.•Risperidone decreases the volume in the hippocampus and total brain.•Risperidone counteracts cortical and basal ganglia metabolic abno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European neuropsychopharmacology 2019-07, Vol.29 (7), p.880-896
Hauptverfasser: Casquero-Veiga, Marta, García-García, David, MacDowell, Karina S., Pérez-Caballero, Laura, Torres-Sánchez, Sonia, Fraguas, David, Berrocoso, Esther, Leza, Juan C., Arango, Celso, Desco, Manuel, Soto-Montenegro, María Luisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Risperidone at adolescence prevents schizophrenia-related anomalies in a rat model.•Risperidone prevents brain volumetric abnormalities in ventricles and pituitary.•Risperidone decreases the volume in the hippocampus and total brain.•Risperidone counteracts cortical and basal ganglia metabolic abnormalities.•Risperidone reduces the expression/activity of neuroinflammatory but no OS markers. Inflammation and oxidative stress (IOS) are considered key pathophysiological elements in the development of mental disorders. Recent studies demonstrated that the antipsychotic risperidone elicits an antiinflammatory effect in the brain. We administered risperidone for 2-weeks at adolescence to assess its role in preventing brain-related IOS changes in the maternal immune stimulation (MIS) model at adulthood. We also investigated the development of volumetric and neurotrophic abnormalities in areas related to the HPA-axis. Poly I:C (MIS) or saline (Sal) were injected into pregnant Wistar rats on GD15. Male offspring received risperidone or vehicle daily from PND35-PND49. We studied 4 groups (8–15 animals/group): Sal-vehicle, MIS-vehicle, Sal-risperidone and MIS-risperidone. [18F]FDG-PET and MRI studies were performed at adulthood and analyzed using SPM12 software. IOS and neurotrophic markers were measured using WB and ELISA assays in brain tissue. Risperidone elicited a protective function of schizophrenia-related IOS deficits. In particular, risperidone elicited the following effects: reduced volume in the ventricles and the pituitary gland; reduced glucose metabolism in the cerebellum, periaqueductal gray matter, and parietal cortex; higher FDG uptake in the cingulate cortex, hippocampus, thalamus, and brainstem; reduced NFκB activity and iNOS expression; and increased enzymatic activity of CAT and SOD in some brain areas. Our study suggests that some schizophrenia-related IOS changes can be prevented in the MIS model. It also stresses the need to search for novel strategies based on anti-inflammatory compounds in risk populations at early stages in order to alter the course of the disease.
ISSN:0924-977X
1873-7862
DOI:10.1016/j.euroneuro.2019.05.002