Deep representation learning for domain adaptable classification of infrared spectral imaging data
Abstract Motivation Applying infrared microscopy in the context of tissue diagnostics heavily relies on computationally preprocessing the infrared pixel spectra that constitute an infrared microscopic image. Existing approaches involve physical models, which are non-linear in nature and lead to clas...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-01, Vol.36 (1), p.287-294 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
Applying infrared microscopy in the context of tissue diagnostics heavily relies on computationally preprocessing the infrared pixel spectra that constitute an infrared microscopic image. Existing approaches involve physical models, which are non-linear in nature and lead to classifiers that do not generalize well, e.g. across different types of tissue preparation. Furthermore, existing preprocessing approaches involve iterative procedures that are computationally demanding, so that computation time required for preprocessing does not keep pace with recent progress in infrared microscopes which can capture whole-slide images within minutes.
Results
We investigate the application of stacked contractive autoencoders as an unsupervised approach to preprocess infrared microscopic pixel spectra, followed by supervised fine-tuning to obtain neural networks that can reliably resolve tissue structure. To validate the robustness of the resulting classifier, we demonstrate that a network trained on embedded tissue can be transferred to classify fresh frozen tissue. The features obtained from unsupervised pretraining thus generalize across the large spectral differences between embedded and fresh frozen tissue, where under previous approaches separate classifiers had to be trained from scratch.
Availability and implementation
Our implementation can be downloaded from https://github.com/arnrau/SCAE_IR_Spectral_Imaging.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btz505 |