Stochastic fluctuations and quasipattern formation in reaction-diffusion systems with anomalous transport

Many approaches to modeling reaction-diffusion systems with anomalous transport rely on deterministic equations which ignore fluctuations arising due to finite particle numbers. Starting from an individual-based model we use a generating-functional approach to derive a Gaussian approximation for thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2019-05, Vol.99 (5-1), p.052124-052124, Article 052124
Hauptverfasser: Baron, Joseph W, Galla, Tobias
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many approaches to modeling reaction-diffusion systems with anomalous transport rely on deterministic equations which ignore fluctuations arising due to finite particle numbers. Starting from an individual-based model we use a generating-functional approach to derive a Gaussian approximation for this intrinsic noise in subdiffusive systems. This results in corrections to the deterministic fractional reaction-diffusion equations. Using this analytical approach, we study the onset of noise-driven quasipatterns in reaction-subdiffusion systems. We find that subdiffusion can be conducive to the formation of both deterministic and stochastic patterns. Our analysis shows that the combination of subdiffusion and intrinsic stochasticity can reduce the threshold ratio of the effective diffusion coefficients required for pattern formation to a greater degree than either effect on its own.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.99.052124